Me: here's a fun bacteria fact!
My mom: wow! Horrifying! Please never tell me anything like that ever again!
Vermilion Waxcap // Hygrocybe miniata
Scarlet Waxcap // Hygrocybe coccinea
by Edward Jones on yt
Ceratiomyxa fruticulosa var. poroides
by fungispot
Have you ever seen a venus flytrap anemone? Members of the genus Actinoscyphia, these critters resemble their namesake plant but are actually marine invertebrates related to jellyfish. They can be found on the seafloor at depths of up to about 7,000 ft (2,133 m), where they lie in wait for passing food. These anemones use their tentacles to catch and consume detritus (decomposing organic waste) that's carried by the current. Growing as much as 1 ft (0.3 m) in length, their tentacles are lined with stinging nematocysts.
Photo: NOAA Photo Library, CC BY 2.0, Wikimedia Commons
this might be a stupid question, but if theres a protein that multiple organisms need, wouldn't the a t g c genetic code for it be the same for different species? or at least closely related species? so theoretically some prompts/sequences should have multiple fitting organisms or closest fitting organisms
(i know it isn't this simple, but im wondering what the exact reason it doesn't work like that is, or what im missing)
not a stupid question, i'll try to answer it to the best of my understanding, but if anyone has anything to add, please do.
put shortly: you're right! if multiple organisms need a certain protein, the code in their DNA is generally the same in that region.
from a genetics perspective, all organisms are actually extremely similar. i'm sure you've heard that we humans share more than half our genetic information with bananas and such.
this is just a factor of how evolution works. every so often, a mutation occurs in an organism's genome, which has a chance to increase the fitness of that organism, which allows it to have more offspring, which changes the mix of alleles in the population. and this is how we get different species of things.
but, because we all share a common ancestor from a long, long, long, long time ago, we do maintain some similarities, especially in regions that code for things essential to life.
those regions where things are *different* is where we're able to tell one species from another, differentiating moths from trees and such. but, overall, all living organisms have a whole lot in common.
With the fast fashion industry… how it is… finding sustainable ways to make fabric is super important. Fibers from synthetic fabrics make up 35% of the microplastics that make their way to the ocean. Natural fibers sourced from plants or animals are much more environmentally sound options, including silk.
Currently, the only way to get natural silk on a large scale is to harvest it from silkworms. You’ve probably heard about the strength and durability of spider silk (it is 6x stronger than Kevlar!) but as of yet there hasn’t been a good way of getting it. Raising spiders the way people do silkworms isn’t really an option. Spiders need a lot of room to build their webs compared to silkworms, and individual spiders don’t produce that much silk. Plus, when you put a whole bunch of spiders in captivity together, they tend to start eating each other.
Attempts to artificially recreate spider silk have also been less than successful. Spider silk has a surface layer of glycoproteins and lipids on it that works as a sort of anti-aging “skin”- allowing the silk to withstand conditions such as sunlight and humidity. But this layer has been very tricky to reproduce.
However, as scientists in China realized, silkworms produce that same kind of layer on their silk. So what if we just genetically modified silkworms to produce spider silk?
That is exactly what the researchers at Donghua University in Shanghai did. A team of researchers introduced spider silk protein genes to silkworms using CRISPR-Cas9 gene editing and microinjections in silkworm eggs. In addition to this, they altered the spider silk proteins so that they would interact properly with the other proteins in silkworm glands. And it worked! This is the first study ever to produce full length spider silk proteins from silkworms.
The applications of this are incredibly exciting. In addition to producing comfortable textiles and new, innovative bulletproof vests, silkworm generated spider silk could be used in cutting edge smart materials or even just to create better performing sutures. In the future, this team intends to research how to modify this new spider silk to be even stronger, and they are confident that “large-scale commercialization is on the horizon."
[Hotwheels gen. nov., a new ground spider genus (Araneae, Gnaphosidae) from southwest China]
The generic name refers to Hot Wheels, a collectible die-cast toy car made by Mattel, as the long, coiled embolus of this new genus resembles a Hot Wheels track; neuter in gender.
Liu & Zhang, 2024