this months herbologist reward, the verdigris agaric! to all my amazing patrons, this little mushroom postcard print with its folklore and facts is now on its way to you!
Back when I asked for some concepts in September on my Instagram, @ sammithyst suggested a mon based on Petrie duals, a term in topology that refers to a loop of edges that can split a 3D shape in half in a certain way. Although that was incorporated into the design of this mon (skew polygon "teeth on each dish"), the name reminded me of Petri dishes.
Petri dishes are shallow dishes with a cover that is used to grow all sorts of cells, like bacteria, fungi, and even human cells. Cells can be grown with the growth medium that is put into the dish, some sort of food like some agarose gel or a liquid mixture of nutrients.
Cantri (Poison/Psychic): When dormant, they reside completely inside their dish, only coming out when they run out of the food that dragged in. Despite having many protozoan-like cells in their body, they seem to be resistant to the antibiotics of this world.
Breathe deep… and thank phytoplankton.
Why? Like plants on land, these microscopic creatures capture energy from the sun and carbon from the atmosphere to produce oxygen.
Phytoplankton are microscopic organisms that live in watery environments, both salty and fresh. Though tiny, these creatures are the foundation of the aquatic food chain. They not only sustain healthy aquatic ecosystems, they also provide important clues on climate change.
Let’s explore what these creatures are and why they are important for NASA research.
Phytoplankton are an extremely diversified group of organisms, varying from photosynthesizing bacteria, e.g. cyanobacteria, to diatoms, to chalk-coated coccolithophores. Studying this incredibly diverse group is key to understanding the health - and future - of our ocean and life on earth.
Their growth depends on the availability of carbon dioxide, sunlight and nutrients. Like land plants, these creatures require nutrients such as nitrate, phosphate, silicate, and calcium at various levels. When conditions are right, populations can grow explosively, a phenomenon known as a bloom.
Phytoplankton blooms in the South Pacific Ocean with sediment re-suspended from the ocean floor by waves and tides along much of the New Zealand coastline.
Phytoplankton are the foundation of the aquatic food web, feeding everything from microscopic, animal-like zooplankton to multi-ton whales. Certain species of phytoplankton produce powerful biotoxins that can kill marine life and people who eat contaminated seafood.
Phytoplankton play an important part in the flow of carbon dioxide from the atmosphere into the ocean. Carbon dioxide is consumed during photosynthesis, with carbon being incorporated in the phytoplankton, and as phytoplankton sink a portion of that carbon makes its way into the deep ocean (far away from the atmosphere).
Changes in the growth of phytoplankton may affect atmospheric carbon dioxide concentrations, which impact climate and global surface temperatures. NASA field campaigns like EXPORTS are helping to understand the ocean's impact in terms of storing carbon dioxide.
NASA studies phytoplankton in different ways with satellites, instruments, and ships. Upcoming missions like Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) - set to launch Jan. 2024 - will reveal interactions between the ocean and atmosphere. This includes how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the ocean.
Information collected by PACE, especially about changes in plankton populations, will be available to researchers all over the world. See how this data will be used.
The Ocean Color Instrument (OCI) is integrated onto the PACE spacecraft in the cleanroom at Goddard Space Flight Center. Credit: NASA
Coelastrum, a microalgae.
This is super interesting and discusses how tilling soils destroys the microbiome of soil, with some micro fauna and microbe populations not even fully recovering in disturbed soils for upwards of 10 years.
That's why the best ways to improve soil is through top dressing with mulch!
An innovative artificial intelligence program called CLEAN (contrastive learning–enabled enzyme annotation) has the ability to predict enzyme activities based on their amino acid sequences, even if the enzymes are unfamiliar or inadequately understood. The researchers have reported that CLEAN has surpassed the most advanced tools in terms of precision, consistency, and sensitivity. However, a deeper understanding of enzymes and their roles would be beneficial in a number of disciplines, including genetics, chemistry, pharmaceuticals, medicine, and industrial materials.
The scientists are using the protein language to forecast their performance, similar to how ChatGPT uses written language data to generate predictive phrases. Almost all scientists desire to comprehend the purpose of a protein as soon as they encounter a new protein sequence. Furthermore, this tool will aid researchers in promptly recognizing the suitable enzymes needed to manufacture chemicals and materials for various applications, be it in biology, medicine, or industry.
Continue Reading
When I was in the hospital, they gave me a big bracelet that said ALLERGY, but like. I'm allergic to bees. Were they going to prescribe me bees in there.
Metabolic Modeling of Gut Bacteria in Fish Fed Agricultural Waste: Implications for Human Health (Bioinformatic work)