micro organisms time
image source
[🔬 Microscope equipped.]
🧫 e-colin Follow Another day, another dollar trying to infect this host! Rise and grind pathogens 💸
4 μnotes
🦠cell287776540923 Follow might fuck around and reactivate my oncogenes later
💊 mr-t-cell1989 grins at you violently
2,334 μnotes
🦠natkiller28937 Follow Who up patrolling the body for cells without MHC Class I molecules 😎😎
🧬 nora-virus Follow You know what? This isn't okay. Pathogens work hard to infect host cells and reproduce. It's the only way for them to perpetuate their own existence. Letting pathogens infect host cells is absolutely necessary to prevent their total extermination. Killing is wrong! Immune cells need to learn to be tolerant of other microbes instead of destroying us just because we want to seize and consume this body's resources.
💊 mr-t-cell1989
🦠natkiller71642 Follow
🩸 neutro-phil2
30 trillion μnotes
orange slime mold plasmodium by Jerry Yap, Malaysia
The fossil record is biased against bats. The flying mammals are small, making their fossilized remains very hard to find. And their light skeletons—ideal for flying around—mean it takes special circumstances for their bodies to be preserved. And yet, against these odds, paleontologists recently uncovered the exceptionally complete skeleton of what now stands as the earliest known bat.
To date, the most complete early bat fossils have come from an area paleontologists call Fossil Lake in Wyoming. The rock layers are world-famous for containing beautifully preserved fish, birds, mammals and other organisms that lived in the area about 52 million years ago. Among the stunning fossils recovered from these rocks, Naturalis Biodiversity Center paleontologist Tim Rietbergen and colleagues report Wednesday in PLOS One, are fossils of a new bat species the researchers have named Icaronycteris gunnelli. By comparing this new species with other early bats, paleontologists are beginning to develop a deeper understanding of how bats spread around the world in that period.
Continue Reading
the purple brittlegill (also blackish-purple russula) is a mycorrhizal fungus in the family russulaceae. it grows with both coniferous & deciduous trees !! it has been recorded in europe, asia & eastern north america. :-)
the big question : can i bite it?? yes, though it's not particularly recommended. it is said to taste.. hot?
r. atropurpurea description :
"the cap is 4–10 cm (1.5–4 in) in diameter. it is dark reddish purple, with a dark; sometimes almost black centre. at first it is convex, but later flattens, & often has a shallow depression. it can also be lighter in colour, or mottled yellowish. the stem is firm, white, & turns grey with age. it measures 3–6 cm in length & 1–2 cm in diameter. the closely set and fairly broad gills are adnexed to almost free, & pale cream, giving a spore print of the same colour."
[images : source & source] [fungus description : source]
Punctelia reddenda
This gorgeous foliose lichen grows in rosettes up to 6 cm in diameter. The upper surface is gray-green to yellow-green with white, punctiform (point or dot like) pseudocyphella which turn into soralia which produce granular or nodular soredia. The lower surface is black toward the center and lightens to brown near the rounded margins of the overlapping lobes. P. reddenda grows on mossy tree trunks and rock in Africa, Macaronesia, North and South America, and Europe.
images: source | source
info: source | source | source
The Baum laboratory along with colleagues at Imperial College London, UK, previously identified a new class of potent antimalarial compounds, belonging to a family of sulfonamides. These compounds kill the parasite only when it is in a specific sexual phase of its life cycle, rapidly stopping it from being able to infect a mosquito and, therefore, preventing any subsequent human infection.
In their new Disease Models & Mechanisms article, Baum and colleagues explored exactly how these compounds work, which is an essential step before the compounds can be developed for testing in patients.
Continue Reading