Monstrous-mind - The Monster Mind

monstrous-mind - The Monster Mind

More Posts from Monstrous-mind and Others

4 months ago

🐈‍⬛🐈🏔️🌌

Winter Views, Sweden
Winter Views, Sweden
Winter Views, Sweden
Winter Views, Sweden
Winter Views, Sweden
Winter Views, Sweden

Winter views, Sweden

stepsisters

2 years ago

🐈‍⬛🐈🎃🍂🍁

When Witches Go Riding, And Black Cats Are Seen, The Moon Laughs And Whispers, 'tis Near Halloween 🎃🖤🐾
When Witches Go Riding, And Black Cats Are Seen, The Moon Laughs And Whispers, 'tis Near Halloween 🎃🖤🐾

When witches go riding, and black cats are seen, the moon laughs and whispers, 'tis near Halloween 🎃🖤🐾

4 years ago

🐈🔭🌃🌌

Black holes

A black hole is a region of spacetime exhibiting such strong gravitational effects that nothing—not even particles and electromagnetic radiation such as light—can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways a black hole acts like an ideal black body, as it reflects no light.  

image

The idea of a body so massive that even light could not escape was briefly proposed by astronomical pioneer and English clergyman John Michell in a letter published in November 1784. Michell’s simplistic calculations assumed that such a body might have the same density as the Sun, and concluded that such a body would form when a star’s diameter exceeds the Sun’s by a factor of 500, and the surface escape velocity exceeds the usual speed of light.

image

At the center of a black hole, as described by general relativity, lies a gravitational singularity, a region where the spacetime curvature becomes infinite. For a non-rotating black hole, this region takes the shape of a single point and for a rotating black hole, it is smeared out to form a ring singularity that lies in the plane of rotation. In both cases, the singular region has zero volume. It can also be shown that the singular region contains all the mass of the black hole solution. The singular region can thus be thought of as having infinite density. 

image

How Do Black Holes Form?

Scientists think the smallest black holes formed when the universe began.

Stellar black holes are made when the center of a very big star falls in upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space.

image

Scientists think supermassive black holes were made at the same time as the galaxy they are in.

Supermassive black holes, which can have a mass equivalent to billions of suns, likely exist in the centers of most galaxies, including our own galaxy, the Milky Way. We don’t know exactly how supermassive black holes form, but it’s likely that they’re a byproduct of galaxy formation. Because of their location in the centers of galaxies, close to many tightly packed stars and gas clouds, supermassive black holes continue to grow on a steady diet of matter.

image

If Black Holes Are “Black,” How Do Scientists Know They Are There?

A black hole can not be seen because strong gravity pulls all of the light into the middle of the black hole. But scientists can see how the strong gravity affects the stars and gas around the black hole. 

Scientists can study stars to find out if they are flying around, or orbiting, a black hole.

image

When a black hole and a star are close together, high-energy light is made. This kind of light can not be seen with human eyes. Scientists use satellites and telescopes in space to see the high-energy light.

image

On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves; because these waves were generated from a black hole merger it was the first ever direct detection of a binary black hole merger. On 15 June 2016, a second detection of a gravitational wave event from colliding black holes was announced. 

image

Simulation of gravitational lensing by a black hole, which distorts the image of a galaxy in the background 

Animated simulation of gravitational lensing caused by a black hole going past a background galaxy. A secondary image of the galaxy can be seen within the black hole Einstein ring on the opposite direction of that of the galaxy. The secondary image grows (remaining within the Einstein ring) as the primary image approaches the black hole. The surface brightness of the two images remains constant, but their angular size varies, hence producing an amplification of the galaxy luminosity as seen from a distant observer. The maximum amplification occurs when the background galaxy (or in the present case a bright part of it) is exactly behind the black hole.

Could a Black Hole Destroy Earth?

Black holes do not go around in space eating stars, moons and planets. Earth will not fall into a black hole because no black hole is close enough to the solar system for Earth to do that.

image

Even if a black hole the same mass as the sun were to take the place of the sun, Earth still would not fall in. The black hole would have the same gravity as the sun. Earth and the other planets would orbit the black hole as they orbit the sun now.

The sun will never turn into a black hole. The sun is not a big enough star to make a black hole.

More posts about black holes

Source 1, 2 & 3

6 years ago

The diversity of worlds in our solar system (climate and geology)…

image

The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anticyclonic storm 22° south of the planet’s equator. It has been continuously observed for 188 years, since 1830. Earlier observations from 1665 to 1713 are believed to be of the same storm; if this is correct, it has existed for at least 350 years. Such storms are not uncommon within the turbulent atmospheres of gas giants.

image

With over 400 active volcanoes, Io is the most geologically active object in the Solar System. This extreme geologic activity is the result of tidal heating from friction generated within Io’s interior as it is pulled between Jupiter and the other Galilean satellites—Europa, Ganymede and Callisto.

image

Europa has the smoothest surface of any known solid object in the Solar System. The apparent youth and smoothness of the surface have led to the hypothesis that a water ocean exists beneath it, which could conceivably harbor extraterrestrial life.

image

Neptune, the eighth and farthest planet from the sun, has the strongest winds in the solar system. At high altitudes speeds can exceed 1,100 mph. That is 1.5 times faster than the speed of sound. In 1989, NASA’s Voyager 2 spacecraft made the first and only close-up observations of Neptune.

image

Ganymede  is the largest and most massive moon of Jupiter and in the Solar System. Possessing a metallic core, it has the lowest moment of inertia factor of any solid body in the Solar System and is the only moon known to have a magnetic field. (Sounds of Ganymede’s magnetosphere).

image

Saturn’s hexagon is a persisting hexagonal cloud pattern around the north pole of Saturn, located at about 78°N. The sides of the hexagon are about 13,800 km (8,600 mi) long, which is more than the diameter of Earth (about 12,700 km (7,900 mi)).

image

Miranda’s surface has patchwork regions of broken terrain indicating intense geological activity in Miranda’s past, and is criss-crossed by huge canyons. It also has the largest known cliff in the Solar System, Verona Rupes, which has a height of over 5 km (3.1 mi). 

Some of Miranda’s terrain is possibly less than 100 million years old based on crater counts, which suggests that Miranda may still be geologically active today.

image

Enceladus is the sixth-largest moon of Saturn. It is about 500 kilometers (310 mi) in diameter, about a tenth of that of Saturn’s largest moon, Titan.  Evidence of liquid water on Enceladus began to accumulate in 2005, when scientists observed plumes containing water vapor spewing from its south polar surface, with jets moving 250 kg of water vapor every second at up to 2,189 km/h (1,360 mph) into space.

image

Titan is the largest moon of Saturn. It is the only moon known to have a dense atmosphere, and the only object in space, other than Earth, where clear evidence of stable bodies of surface liquid has been found.

The Diversity Of Worlds In Our Solar System (climate And Geology)…

Triton is one of the few moons in the Solar System known to be geologically active (the others being Jupiter’s Io and Europa, and Saturn’s Enceladus and Titan). As a consequence, its surface is relatively young with few obvious impact craters, and a complex geological history revealed in intricate cryovolcanic and tectonic terrains. Part of its surface has geysers erupting sublimated nitrogen gas, contributing to a tenuous nitrogen atmosphere less than 1/70,000 the pressure of Earth’s atmosphere at sea level.

source: wikipedia~

image credit: data and images from NASA

6 years ago

10 Things: Calling All Pluto Lovers

June 22 marks the 40th anniversary of Charon’s discovery—the dwarf planet Pluto’s largest and first known moon. While the definition of a planet is the subject of vigorous scientific debate, this dwarf planet is a fascinating world to explore. Get to know Pluto’s beautiful, fascinating companion this week.

1. A Happy Accident

image

Astronomers James Christy and Robert Harrington weren’t even looking for satellites of Pluto when they discovered Charon in June 1978 at the U.S. Naval Observatory Flagstaff Station in Arizona – only about six miles from where Pluto was discovered at Lowell Observatory. Instead, they were trying to refine Pluto’s orbit around the Sun when sharp-eyed Christy noticed images of Pluto were strangely elongated; a blob seemed to move around Pluto. 

The direction of elongation cycled back and forth over 6.39 days―the same as Pluto’s rotation period. Searching through their archives of Pluto images taken years before, Christy then found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto.

2. Forever and Always

image

Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto’s underworld. But Christy also chose it for a more personal reason: The first four letters matched the name of his wife, Charlene. (Cue the collective sigh.)

3. Big Little Moon

image

Charon—the largest of Pluto’s five moons and approximately the size of Texas—is almost half the size of Pluto itself. The little moon is so big that Pluto and Charon are sometimes referred to as a double dwarf planet system. The distance between them is 12,200 miles (19,640 kilometers).

4. A Colorful and Violent History

image

Many scientists on the New Horizons mission expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more. High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14 and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator.

5. Grander Canyon

image

This great canyon system stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and likely around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.

6. Officially Official

image

In April 2018, the International Astronomical Union—the internationally recognized authority for naming celestial bodies and their surface features—approved a dozen names for Charon’s features proposed by our New Horizons mission team. Many of the names focus on the literature and mythology of exploration.

7. Flying Over Charon

This flyover video of Charon was created thanks to images from our New Horizons spacecraft. The “flight” starts with the informally named Mordor (dark) region near Charon’s north pole. Then the camera moves south to a vast chasm, descending to just 40 miles (60 kilometers) above the surface to fly through the canyon system.

8. Strikingly Different Worlds

image

This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by New Horizons as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain.

9. Quality Facetime

image

Charon neither rises nor sets, but hovers over the same spot on Pluto’s surface, and the same side of Charon always faces Pluto―a phenomenon called mutual tidal locking.

10. Shine On, Charon

image

Bathed in “Plutoshine,” this image from New Horizons shows the night side of Charon against a star field lit by faint, reflected light from Pluto itself on July 15, 2015.

Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago

🔭🌃🌌🛰

Astronomers Detect Matter Falling Into Black Hole

Astronomers Detect Matter Falling into Black Hole

University of Leicester’s Professor Ken Pounds and co-authors report the detection of matter falling into a black hole at 30% of the speed of light.

Astronomers Detect Matter Falling Into Black Hole

It is now well established that a supermassive black hole lies in the center of most galaxies, and further that it accretes matter through a disk.

With sufficient matter (interstellar gas clouds or even isolated stars) falling into the black hole, these can become extremely luminous, and are seen as a quasar or active galactic nucleus (AGN).

Astronomers Detect Matter Falling Into Black Hole

The orbit of matter around the black hole is often assumed to be aligned with the rotation of the black hole, but there is no compelling reason for this to be the case. In fact, the reason we have summer and winter is that the Earth’s daily rotation does not line up with its yearly orbit around the Sun.

Until now it has been unclear how misaligned rotation might affect the in-fall of matter. This is particularly relevant to the feeding of supermassive black holes since matter can fall in from any direction.

Astronomers Detect Matter Falling Into Black Hole

Using data from ESA’s XMM-Newton X-ray Observatory, Professor Pounds and colleagues looked at X-ray spectra from PG1211+143, a Seyfert galaxy (characterized by a very bright AGN resulting from the presence of the massive black hole at its nucleus) located in the constellation Coma Berenices, about one billion light-years away.

Astronomers Detect Matter Falling Into Black Hole

The team found the spectra to be strongly red-shifted, showing the observed matter to be falling into PG1211+143’s black hole at the enormous speed of 30% of the speed of light, or around 62,000 miles per second (100,000 km per second).

The gas has almost no rotation around the black hole, and is detected extremely close to it in astronomical terms, at a distance of only 20 times the black hole’s size (its event horizon, the boundary of the region where escape is no longer possible).

“The galaxy we were observing with XMM-Newton has a 40-million-solar-mass black hole which is very bright and evidently well fed,” Professor Pounds said.

Astronomers Detect Matter Falling Into Black Hole

“Indeed some 15 years ago we detected a powerful wind indicating the black hole was being over-fed. While such winds are now found in many active galaxies, PG1211+143 has now yielded another ‘first,’ with the detection of matter plunging directly into the black hole itself.”

“We were able to follow an Earth-sized clump of matter for about a day, as it was pulled towards the black hole, accelerating to a third of the velocity of light before being swallowed up by the hole.” source

5 years ago

🍁🍂🎃🍂🍁

Autumn Alley, Germany …..by Michael Boehmlaend

Autumn Alley, Germany …..by Michael Boehmlaend

6 years ago
The Milky Way’s Long-lost Sibling Finally Found

The Milky Way’s long-lost sibling finally found

Scientists at the University of Michigan have deduced that the Andromeda galaxy, our closest large galactic neighbor, shredded and cannibalized a massive galaxy two billion years ago.

Even though it was mostly shredded, this massive galaxy left behind a rich trail of evidence: an almost invisible halo of stars larger than the Andromeda galaxy itself, an elusive stream of stars and a separate enigmatic compact galaxy, M32. Discovering and studying this decimated galaxy will help astronomers understand how disk galaxies like the Milky Way evolve and survive large mergers.

This disrupted galaxy, named M32p, was the third-largest member of the Local Group of galaxies, after the Milky Way and Andromeda galaxies. Using computer models, Richard D'Souza and Eric Bell of the University of Michigan’s Department of Astronomy were able to piece together this evidence, revealing this long-lost sibling of the Milky Way. Their findings were published in Nature Astronomy.

source

  • dawn9476
    dawn9476 reblogged this · 1 year ago
  • diegohoncho
    diegohoncho liked this · 5 years ago
  • lindenwalker-studios
    lindenwalker-studios liked this · 6 years ago
  • autumnbelle13
    autumnbelle13 reblogged this · 6 years ago
  • journey-to-the-wild-unknown
    journey-to-the-wild-unknown reblogged this · 6 years ago
  • journey-to-the-wild-unknown
    journey-to-the-wild-unknown liked this · 6 years ago
  • poetryofautumnlight
    poetryofautumnlight reblogged this · 6 years ago
  • mrhighpark
    mrhighpark liked this · 6 years ago
  • crazyfuckedupmike
    crazyfuckedupmike liked this · 6 years ago
  • kkfromtexas
    kkfromtexas reblogged this · 6 years ago
  • kkfromtexas
    kkfromtexas liked this · 6 years ago
  • s-t-e-v-e
    s-t-e-v-e reblogged this · 6 years ago
  • s-t-e-v-e
    s-t-e-v-e liked this · 6 years ago
  • skl-qb
    skl-qb liked this · 6 years ago
  • freezing-morning-air
    freezing-morning-air reblogged this · 6 years ago
  • sadgayviolin
    sadgayviolin liked this · 6 years ago
  • autumnal-experience
    autumnal-experience reblogged this · 6 years ago
  • t-0mes
    t-0mes reblogged this · 6 years ago
  • youngzonkalienclam-blog
    youngzonkalienclam-blog liked this · 6 years ago
  • latenightrandomness
    latenightrandomness liked this · 6 years ago
  • wildflowerjourney17
    wildflowerjourney17 reblogged this · 6 years ago
  • believerindreams
    believerindreams liked this · 6 years ago
  • gabbysbo0ks
    gabbysbo0ks liked this · 6 years ago
  • monstrous-mind
    monstrous-mind reblogged this · 6 years ago
  • monstrous-mind
    monstrous-mind liked this · 6 years ago
  • scam1981
    scam1981 reblogged this · 6 years ago
  • jessischn
    jessischn reblogged this · 6 years ago
  • salem-gorey
    salem-gorey liked this · 6 years ago
  • blueheaven777-blog
    blueheaven777-blog liked this · 6 years ago
  • holistichufflepuff
    holistichufflepuff liked this · 6 years ago
  • ericaamerica100
    ericaamerica100 reblogged this · 6 years ago
  • smeetsya
    smeetsya liked this · 6 years ago
  • jinroumei
    jinroumei reblogged this · 6 years ago
  • jinroumei
    jinroumei liked this · 6 years ago
  • dnikki
    dnikki liked this · 6 years ago
  • autumn--weather
    autumn--weather reblogged this · 6 years ago
  • lisa-anna-99
    lisa-anna-99 liked this · 6 years ago
  • dirtj0b
    dirtj0b liked this · 6 years ago
  • ephemeral-autumn
    ephemeral-autumn liked this · 6 years ago
  • hopechadwick09
    hopechadwick09 liked this · 6 years ago
  • joeflextech
    joeflextech liked this · 6 years ago
monstrous-mind - The Monster Mind
The Monster Mind

  My ambition is handicapped by laziness. -C. Bukowski    Me gustan las personas desesperadas con mentes rotas y destinos rotos. Están llenos de sorpresas y explosiones. -C. Bukowski. I love cats. Born in the early 80's, raised in the 90's. I like Nature, Autumn, books, landscapes, cold days, cloudy Windy days, space, Science, Paleontology, Biology, Astronomy, History, Social Sciences, Drawing, spending the night watching at the stars, Rick & Morty. I'm a lazy ass.

222 posts

Explore Tumblr Blog
Search Through Tumblr Tags