Your gateway to endless inspiration
At the bottom of a very dark swimming pool, divers are getting ready for missions to the Moon. Take a look at this a recent test in the Neutral Buoyancy Laboratory at NASA’s Johnson Space Center. NASA astronauts are no strangers to extreme environments. We best prepare our astronauts by exposing them to training environments here on Earth that simulate the 1/6th gravity, suit mobility, lighting and lunar terrain they'll expect to see on a mission to the Moon. Practice makes perfect.
The Neutral Buoyancy Laboratory at NASA's Johnson Space Center is where astronauts train for spacewalks, and soon, moonwalks.
When astronauts go to the Moon’s South Pole through NASA’s Artemis program, the Sun will only be a few degrees over the horizon, creating long, dark shadows. To recreate this environment, divers at the lab turned off the lights, put up black curtains on the pool walls to minimize reflection, and used powerful underwater lamps to simulate the environment astronauts might experience on lunar missions.
These conditions replicate the dark, long shadows astronauts could see and lets them evaluate the different lighting configurations. The sand at the bottom is common pool filter sand with some other specialized combinations in the mix.
This was a test with divers in SCUBA gear to get the lighting conditions right, but soon, NASA plans to conduct tests in this low-light environment using spacesuits.
Neutral buoyancy is the equal tendency of an object to sink or float. Through a combination of weights and flotation devices, an item is made to be neutrally buoyant and it will seem to "hover" under water. In such a state, even a heavy object can be easily manipulated, much as it is in the zero gravity of space, but will still be affected by factors such as water drag.
The Neutral Buoyancy Laboratory is 202 ft in length, 102 ft in width and 40 ft in depth (20 ft above ground level and 20 ft below) and holds 6.2 million gallons of water.
When the sun goes down, the lights on Earth shine bright. A new look using our satellite data captures the lights coming from our neighborhoods, vehicles, buildings, factories, fishing vessels and other human activity brightening the night.
Our scientists have just released the first new global map of Earth at night since 2012. This nighttime view of our home planet, dubbed the Black Marble, provides researchers with a unique perspective of human activities around the globe.
By studying Earth at night, researchers can investigate how and why cities expand, monitor light intensity to estimate energy use and economic activity, and aid in disaster response in near-real time.
The data on Earth at night comes from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership satellite, jointly managed by NASA and the National Oceanic and Atmospheric Administration (NOAA).
VIIRS captures visible and infrared light, allowing researchers to glimpse the Earth as it looks to astronauts peering out of the International Space Station. The new map is a composite of data collected in 2016, and it took several months of processing to filter out clouds, moonlight, airglow, and other interfering features to create the global image. In the coming months our scientists will release daily nighttime lights data at even finer resolutions for the first time.
The East Coast sparkles with population hubs, suburbs circling cities and major roadways. The I-95 corridor includes the most densely populated region of the United States – the stretch from Washington, DC to Boston.
To get images like these from the satellite data, our scientists had to filter out moonlight, aerosols and other sources of extraneous light – the goal is to eventually be able to detect the lights from a single building or fishing boat.
Daytime satellite images, like this one from Landsat 8, can show us the forests, deserts, mountains, waterways and built-up cities. Add a nighttime view, and scientists can study when and how people are using these limited resources – like the lights tracing the Nile River leading to the metropolis of Cairo, Egypt.
Lights aren’t confined to land. With the global nighttime view, the ocean is dotted with fishing fleets, including boats that try to attract their catch with bright lights.
What lights illuminate your neighborhood? Download a high-resolution version of the Black Marble HERE, and find out more about our new night lights data HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Although there are no seasons in space, some cosmic vistas invoke thoughts of a frosty winter landscape. Here are a few stellar images of holiday wonderlands from across the galaxy…
Located in our galaxy about 5,500 light years from Earth, this region is actually a “cluster of clusters,” containing at least three clusters of young stars, including many hot, massive, luminous stars.
The outstretched “wings” of this nebula looks like a soaring, celestial snow angel. Twin lobes of super-hot gas, glowing blue in this image, stretch outward from the central star. This hot gas creates the “wings” of our angel. A ring of dust and gas orbiting the star acts like a belt, clinching the expanding nebula into an “hourglass” shape.
At this time of year, holiday parties often include festive lights. When galaxies get together, they also may be surrounded by a spectacular light show. This pair of spiral galaxies has been caught in a grazing encounter. This region has hosted three supernova explosions in the past 15 years and has produced one of the most bountiful collections of super-bright X-ray lights known.
What do the following things have in common: a cone, the fur of a fox and a Christmas tree? Answer: they all occur in the constellation of the unicorn (Monoceros). Pictured as a star forming region, the complex jumble of cosmic gas and dust is about 2,700 light-years away.
Resembling festive lights on a holiday wreath, this Hubble Space Telescope image of a nearby spiral galaxy is an iconic reminder of the impending season. Bright knots of glowing gas light up the spiral arms, indicating a rich environment of star formation.
The Hubble Space Telescope captured two festive-looking nebulas, situated so as to appear as one. Intense radiation from the brilliant central stars is heating hydrogen in each of the nebulas, causing them to glow red…like a holiday light.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Holiday lights don’t come in one shape or size, just like they don’t only appear on Earth. Take a look at a few of these celestial light shows:
1. Galactic Wreath of Lights
This festive image captured by our Hubble Space Telescope resembles a holiday wreath made of sparkling lights. This galactic wreath is located around 6,500 light-years away.
2. Red and Green Aurora
This beautiful aurora was captured by Astronaut Scott Kelly while aboard the International Space Station. He shared it with his Twitter followers on June, 22 during his Year in Space mission. This image of Earth’s aurora is festive with its red and green lights.
3. Holiday Snow Angel
Our Hubble Space Telescope captured this stunning image of what looks like a soaring, celestial snow angel. This picture shows a bipolar star-forming region, called Sharpless 2-106.
4. Cosmic Holiday Ornament
This festive-looking nearby planetary nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined. This cosmic decoration was spotted by our Hubble Space Telescope.
5. Holiday Lights on the Sun
Even the sun gets festive with it’s festive looking solar flares. This significant flare was seen by our Solar Dynamics Observatory (SOHO) on Dec. 19, 2014. Even though solar flares are powerful bursts of radiation, it cannot pas through Earth’s atmosphere to physically affect humans on the ground. That said, when intense enough, the radiation can disturb the atmosphere in the layer where GPS and communications signals travel.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com