Hello There 👋

Hello There 👋

Hello there 👋

Welcome back to Mindful Mondays! 🧘

Mondays are, famously, most people’s seventh favorite day of the week. And Mondays where everything is darker, longer, and colder than normal? Thanks, but no thanks.

But don’t panic; we’ve got something to help. It might be small, but it can make a big difference. Just ten minutes of mindfulness can go a long way, and taking some time out to sit down, slow down, and breathe can help center your thoughts and balance your mood. Sometimes, the best things in life really are free.

This year, we have teamed up with the good folks at @nasa. They want you to tune in and space out to relaxing music and ultra-high-definition visuals of the cosmos—from the surface of Mars.  

Sounds good, right? Well, it gets better. Watch more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.

Why not give it a try? Just a few minutes this Monday morning can make all the difference, and we are bringing mindfulness straight to you. 

🧘WATCH: Space Out with NASA: Martian Landscapes, 11/27 at 1pm EST🧘

Space Out with NASA: Martian Landscapes
YouTube
Explore the surface of Mars as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmi

More Posts from Nasa and Others

5 years ago
Zoom To The Moon! Astronauts Will Blast Off To The Moon In The Orion Spacecraft With NASA’s Space Launch

Zoom to the Moon! Astronauts will blast off to the Moon in the Orion spacecraft with NASA’s Space Launch System, the world’s most powerful rocket ever built. Help #AstronautSnoopy launch into deep space, farther than any human or bird has ever gone before. https://www.nasa.gov/feature/peanuts-toys-and-books-commemorate-50th-anniversary-of-apollo/


Tags
5 years ago
If We Could Squeeze A Galaxy, It Would Be This Fluffy-looking One.

If we could squeeze a galaxy, it would be this fluffy-looking one.

Spiral galaxies like this, located 60 million light-years away, have supermassive black holes at their bright centers. Astronomers are trying to understand this cozy relationship. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Could Planets Like Those Imagined in Star Wars Be Real??

Look at what we’ve found so far. 

Is your favorite Star Wars planet a desert world or an ice planet or a jungle moon?

It’s possible that your favorite planet exists right here in our galaxy. Astronomers have found over 3,400 planets around other stars, called “exoplanets.”

Some of these alien worlds could be very similar to arid Tatooine, watery Scarif and even frozen Hoth, according to NASA scientists.

Find out if your planet exists in a galaxy far, far away or all around you.

Planets With Two Suns

image

Were you going to the Tosche station to pick up some power converters? Hold on a minute and learn about Kepler-16b, 200 light-years from Earth. It’s the first honest-to-goodness planet ever found where you could watch two suns set like Luke. George Lucas himself even blessed its nickname ‘Tatooine.’ It’s not a perfect comparison: Kepler-16b is a cold gas giant roughly the size of Saturn. But don’t worry, kid.

image

The best part is that Tatooine aka Kepler-16b was just the first. It has family. A LOT of family. Half the stars in our galaxy are pairs, rather than single stars like our sun. If every star has at least one planet, that’s billions of worlds with two suns. Billions! Maybe waiting for life to be found on them.

Desert Worlds

image

If you’re like Finn and want to know why everyone wants to go back to Jakku desert planets, get this: Star Wars may be reflecting the real universe. Desert worlds are not only a very real possibility, but we think they are probably very common. They can be hot, like the fictional Tatooine and Jakku, or cold, like Jedha in “Rogue One” or our real planet Mars.

Perhaps it’s not so weird that both Luke and Rey grew up on planets that look suspiciously like each other. If you’re scouring the universe for a place to settle, you have a good chance of finding a desert planet.

Ice Planets

image

There is a Hoth in our galaxy! Though not the same Hoth from “The Empire Strikes Back” (no invading Imperials, for one). The icy super-Earth reminded scientists so much of the frozen Rebel base they nicknamed it “Hoth.” The planet’s real name is OGLE 2005-BLG-390L.

Our galaxy’s Hoth is too cold to support life as we know it. But life may evolve under the ice of a different world, or a moon in our solar system.

We’re currently designing a mission to look for life under the crust of Jupiter’s icy moon Europa. We’re pretty sure ity won’t look like tauntauns, if it exists.

image

Forest worlds

image

Both the forest moon of Endor and Takodana, the home of Han Solo’s favorite cantina in “Force Awakens,” are green like our home planet. But astrobiologists think that plant life on other worlds could be red, black, or even rainbow-colored!

In August 2016, astronomers from the European Southern Observatory announced the discovery of Proxima Centauri b, a planet only four light-years away from Earth, which orbits a tiny red star.

image

The light from a red star, also known as an M dwarf, is dim and mostly in the infrared spectrum (as opposed to the visible spectrum we see with our sun). And that could mean plants with wildly different colors than what we’re used to seeing on Earth. Or, animals that see in the near-infrared.

And Beyond

image

The next few years will see the launch of a new generation of spacecraft to search for planets around other stars. TESS and the James Webb Telescope will go into space in 2018, and WFIRST in the mid-2020s. That’s one step closer to finding life.

You don’t need to visit a galaxy far, far away to find wondrous worlds. Just visit this one ... there’s plenty to see.

Discover more about exoplanets here: https://exoplanets.nasa.gov/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

9 months ago

Athletes Go for the Gold with NASA Spinoffs

NASA technology tends to find its way into the sporting world more often than you’d expect. Fitness is important to the space program because astronauts must undergo the extreme g-forces of getting into space and endure the long-term effects of weightlessness on the human body. The agency’s engineering expertise also means that items like shoes and swimsuits can be improved with NASA know-how.

As the 2024 Olympics are in full swing in Paris, here are some of the many NASA-derived technologies that have helped competitive athletes train for the games and made sure they’re properly equipped to win.

A person wears a two-tone full-body swimsuit with a Speedo logon on the upper right and the right thigh. The tank-top cut of the upper portion of the suit connects to the torso and legs with crisscrossing bands of darker fabric. Credit: Speedo USA

The LZR Racer reduces skin friction drag by covering more skin than traditional swimsuits. Multiple pieces of the water-resistant and extremely lightweight LZR Pulse fabric connect at ultrasonically welded seams and incorporate extremely low-profile zippers to keep viscous drag to a minimum.

Swimsuits That Don’t Drag

When the swimsuit manufacturer Speedo wanted its LZR Racer suit to have as little drag as possible, the company turned to the experts at Langley Research Center to test its materials and design. The end result was that the new suit reduced drag by 24 percent compared to the prior generation of Speedo racing suit and broke 13 world records in 2008. While the original LZR Racer is no longer used in competition due to the advantage it gave wearers, its legacy lives on in derivatives still produced to this day.

A single, laced up running shoe of white material has varied textures on the top and side. The visible side of the shoe’s rubber sole mirrors the texture and wave pattern on the side of the shoe. Credit: Adidas

Trilion Quality Systems worked with NASA’s Glenn Research Center to adapt existing stereo photogrammetry software to work with high-speed cameras. Now the company sells the package widely, and it is used to analyze stress and strain in everything from knee implants to running shoes and more.

High-Speed Cameras for High-Speed Shoes

After space shuttle Columbia, investigators needed to see how materials reacted during recreation tests with high-speed cameras, which involved working with industry to create a system that could analyze footage filmed at 30,000 frames per second. Engineers at Adidas used this system to analyze the behavior of Olympic marathoners' feet as they hit the ground and adjusted the design of the company’s high-performance footwear based on these observations.

A man dressed in a white martial arts shirt, pants and black belt holds a rectangular pad with a plat, square at the center and a clip-on monitor attached to his karate belt. A second man wearing long white pants and a black belt demonstrates a kick, leaping in the air, kicking the square with his left foot. Credit: Impulse Sports Training Systems, Inc.

Martial artist Barry French holds an Impax Body Shield while former European middle-weight kickboxing champion Daryl Tyler delivers an explosive jump side kick; the force of the impact is registered precisely and shown on the display panel of the electronic box French is wearing on his belt.

One-Thousandth-of-an-Inch Punch

In the 1980s, Olympic martial artists needed a way to measure the impact of their strikes to improve training for competition. Impulse Technology reached out to Glenn Research Center to create the Impax sensor, an ultra-thin film sensor which creates a small amount of voltage when struck. The more force applied, the more voltage it generates, enabling a computerized display to show how powerful a punch or kick was.

A woman on the International Space Station dressed in a t-shirt and shorts wears a harness that looks like football shoulder pads connected by cables to the mental frame of the exercise machine. Credit: NASA

Astronaut Sunita Williams poses while using the Interim Resistive Exercise Device on the ISS. The cylinders at the base of each side house the SpiraFlex FlexPacks that inventor Paul Francis honed under NASA contracts. They would go on to power the Bowflex Revolution and other commercial exercise equipment.

Weight Training Without the Weight

Astronauts spending long periods of time in space needed a way to maintain muscle mass without the effect of gravity, but lifting free weights doesn’t work when you’re practically weightless. An exercise machine that uses elastic resistance to provide the same benefits as weightlifting went to the space station in the year 2000. That resistance technology was commercialized into the Bowflex Revolution home exercise equipment shortly afterwards.

Want to learn more about technologies made for space and used on Earth? Check out NASA Spinoff to find products and services that wouldn’t exist without space exploration.   

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago
image

The year is 1965, and thanks to telecommunication engineers at our Jet Propulsions Laboratory, the first color version of one of our first Martian images had been created. Brought to life by hand coloring numbered strips, this image is a true blast to the past.

Fast forward to the 21st century and our Mars InSight mission now enables us to gawk at the Martian horizon as if we were there. InSight captured this panorama of its landing site on Dec. 9, 2018, the 14th Martian day, or sol, of its mission. The 290-degree perspective surveys the rim of the degraded crater InSight landed in and was made up of 30 photos stitched together.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

We’re Upgrading Our X-ray Vision!

We’re Upgrading Our X-ray Vision!

Think X-ray vision is a superpower found only in comics and movies? Unlike Superman and Supergirl, NASA has it for real, thanks to the X-ray observatories we’ve sent into orbit.

Now the Imaging X-ray Polarimetry Explorer – IXPE for short – has shot into space to enhance our superpower!

Meet IXPE

We’re Upgrading Our X-ray Vision!

When dentists take X-ray pictures of a tooth, they use a machine that makes X-rays and captures them on a device placed on the opposite side. But X-rays also occur naturally. In astronomy, we observe X-rays made by distant objects to learn more about them.

IXPE will improve astronomers’ knowledge about some of these objects, like black holes, neutron stars, and the expanding clouds made by supernova explosions.

That’s because it will capture a piece of information about X-ray light that has only rarely been measured from space!

We’re Upgrading Our X-ray Vision!

X-ray astronomers have learned a lot about the cosmos by measuring three properties of light – when it arrives, where it’s coming from, and what energies it has (think: colors). Picture these characteristics as making up three of the four sides of a pyramid. The missing piece is a property called polarization.

Polarization tells us how organized light is. This gives astronomers additional clues about how the X-rays were made and what matter they’ve passed through on their way to us. IXPE will explore this previously hidden side of cosmic X-ray sources.

What is polarization?

We’re Upgrading Our X-ray Vision!

All light, from microwaves to gamma rays, is made from pairs of waves traveling together – one carrying electricity and the other magnetism. These two waves always vibrate at right angles (90°) to each other, with their peaks and valleys in sync, and they also vibrate at right angles to their direction of motion.

To keep things simple, we’ll illustrate only one of these waves – the one carrying electricity. If we could zoom into a typical beam of light, we’d see something like the animation above. It’s a mess, with all the wave peaks pointing in random directions.

We’re Upgrading Our X-ray Vision!

When light interacts with matter, it can become better organized. Its electric field can vibrate in a way that keeps all the wave crests pointing in the same direction, as shown above. This is polarized light.

The amount and type of polarization we detect in light tell us more about its origin, as well as any matter it interacted with before reaching us.

Let’s look at the kinds of objects IXPE will study and what it may tell us about them.

Exploring star wrecks

We’re Upgrading Our X-ray Vision!

Exploded stars create vast, rapidly expanding clouds called supernova remnants – like the Jellyfish Nebula above. It formed 4,000 years ago, but even today, the remnant’s heart can tell us about the extreme conditions following the star’s explosion.

X-rays give us a glimpse of the powerful processes at work during and after these explosions. IXPE will map remnants like this, revealing how X-rays are polarized across the entire object. This will help us better understand how these celestial cataclysms take place and evolve.

Magnifying supermagnets

We’re Upgrading Our X-ray Vision!

Some supernovae leave behind neutron stars. They form when the core of a massive star collapses, squeezing more than our Sun’s mass into a ball only as wide as a city.

The collapse greatly ramps up their spin. Some neutron stars rotate hundreds of times a second! Their magnetic fields also get a tremendous boost, becoming trillions of times stronger than Earth’s. One type, called a magnetar, boasts the strongest magnetic fields known – a thousand times stronger than typical neutron stars.

These superdense, superspinning supermagnets frequently erupt in powerful outbursts (illustrated above) that emit lots of X-rays. IXPE will tell astronomers more about these eruptions and the extreme magnetic fields that help drive them.

Closing in on black holes

We’re Upgrading Our X-ray Vision!

Black holes can form when massive stars collapse or when neutron stars crash together. Matter falling toward a black hole quickly settles into a hot, flat structure called an accretion disk. The disk’s inner edge gradually drains into the black hole. Notice how odd the disk appears from certain angles? This happens because the black hole’s extreme gravity distorts the path of light coming from the disk’s far side.

X-rays near the black hole can bounce off the disk before heading to our telescopes, and this polarizes the light. What’s exciting is that the light is polarized differently across the disk. The differences depend both on the energies of the X-rays and on what parts of the disk they strike. IXPE observations will provide astronomers with a detailed picture of what’s happening around black holes in our galaxy that can’t be captured in any other way.

By tracking how X-ray light is organized, IXPE will add a previously unseen dimension to our X-ray vision. It’s a major upgrade that will give astronomers a whole new perspective on some of the most intriguing objects in the universe.

Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

Celebrating Spitzer, One of NASA’s Great Observatories

As the Spitzer Space Telescope’s 16-year mission ends, we’re celebrating the legacy of our infrared explorer. It was one of four Great Observatories – powerful telescopes also including Hubble, Chandra and Compton – designed to observe the cosmos in different parts of the electromagnetic spectrum.

Light our eyes can see

The part of the spectrum we can see is called, predictably, visible light. But that’s just a small segment of all the wavelengths of the spectrum. The Hubble Space Telescope observes primarily in the visible spectrum. Our Chandra X-ray Observatory is designed to detect (you guessed it) X-ray emissions from very hot regions of the universe, like exploded stars and matter around black holes. Our Compton Gamma Ray Observatory, retired in 2000, produced the first all-sky survey in gamma rays, the most energetic and penetrating form of light.

Celebrating Spitzer, One Of NASA’s Great Observatories

Then there’s infrared…

Infrared radiation, or infrared light, is another type of energy that we can't see but can feel as heat. All objects in the universe emit some level of infrared radiation, whether they're hot or cold. Spitzer used its infrared instrument to make discoveries in our solar system (including Saturn's largest ring) all the way to the edge of the universe. From stars being born to planets beyond our solar system (like the seven Earth-size exoplanets around the star TRAPPIST-1), Spitzer's science discoveries will continue to inspire the world for years to come.

Celebrating Spitzer, One Of NASA’s Great Observatories

Multiple wavelengths

Together, the work of the Great Observatories gave us a more complete view and understanding of our universe.

Celebrating Spitzer, One Of NASA’s Great Observatories

Hubble and Chandra will continue exploring our universe, and next year they’ll be joined by an even more powerful observatory … the James Webb Space Telescope!

Celebrating Spitzer, One Of NASA’s Great Observatories

Many of Spitzer's breakthroughs will be studied more precisely with the Webb Space Telescope. Like Spitzer, Webb is specialized for infrared light. But with its giant gold-coated beryllium mirror and nine new technologies, Webb is about 1,000 times more powerful. The forthcoming telescope will be able to push Spitzer's science findings to new frontiers, from identifying chemicals in exoplanet atmospheres to locating some of the first galaxies to form after the Big Bang.

We can’t wait for another explorer to join our space telescope superteam!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

From the people who work for us, to ESA’s ExoMars, to phases of the moon, learn more about the solar system. 

1. NASA Is More Than Astronauts

image

Our employees engage in a very wide range of work, and they come from a variety of backgrounds. To meet some of them and learn how they came to work for us, follow the #NASAProud tag on social media.

+ Learn about job opportunities and why NASA employees love working there + Get to know the people who explore the solar system

2. ExoMars Is Cleared for Landing 

image

A joint project between the European Space Agency and Russia's Roscosmos space agency, ExoMars 2016 will enter orbit around the Red Planet on Oct. 19. The mission includes the Trace Gas Orbiter (TGO) and the Schiaparelli entry, descent and landing demonstrator. TGO will make a detailed inventory of Mars' atmospheric gases, looking especially for rare gases like methane to help determine whether that methane stems from a geological or biological source. The orbiter also carries a pair of transmitters provided by NASA. The Schiaparelli lander separated from TGO on Oct. 16, entering the atmosphere for a six-minute descent to a region in Meridiani Planum, not far from NASA's Opportunity rover. Schiaparelli will test landing technologies in preparation for future missions, including a heatshield, parachute, propulsion system and a crushable structure.

+ Go along for the ride

3. This Just in From Jupiter

Solar System: Things To Know This Week

Mission managers for our Juno mission to Jupiter have decided to postpone the burn of its main rocket motor originally scheduled for Oct. 19. Engineers want to carefully examine telemetry from a pair of sticky helium valves before the maneuver, which will reduce the time it takes Juno to orbit Jupiter from about 53 days to 14 days. The next opportunity for the burn would be during its close flyby of Jupiter on Dec. 11. Meanwhile, the spacecraft is still gathering data about Jupiter, and Juno will still swing close by the giant planet on Oct. 19.

+ Read more

4. It's Just a Phase 

Solar System: Things To Know This Week

The moon was full on Oct. 16. This month's full moon is sometimes called the Harvest Moon or Hunter's Moon.

+ See a video showing all of this year's lunar + Learn what causes the moon's phases

5. Free to Ride

Solar System: Things To Know This Week

Did you know that NASA offers several other fascinating (and free) online experiences, all based on actual data from real missions. Here are a few to explore:

+ Mars Trek + Vesta Trek + Lunaserv Global Explorer + Deep Space Network (DSN) Now + Spacecraft 3D app

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What was the hardest part in training to go to space?

One of the most challenging parts of space training was learning how to use the space suit.  We weigh over 400 pounds in the space suit, and since it is pressurized, each movement of your hands is like working against an exercise ball.  Since the suit needs to be quite bulky in order to protect us from the environment of space (vacuum, radiation, micrometeoroids, extreme temperature) while doing a spacewalk, it makes body movements a bit awkward.  Dexterity is quite compromised with the bulky gloves as well.  Although it is challenging, however, it is likely also the most rewarding, because, well, you are in a SPACE SUIT!!!  Hopefully I’ll get to do a spacewalk and look down on the our planet from above on a mission to the International Space Station in a few years. 


Tags
5 years ago

Swift: Our Sleuth for the Universe’s Gamma-ray Bursts

The universe is full of mysteries, and we continue to search for answers. How can we study matter and energy that we can’t see directly? What’s it like inside the crushed core of a massive dead star? And how do some of the most powerful explosions in the universe evolve and interact with their surrounding environment? 

Luckily for us, NASA’s Neil Gehrels Swift Observatory is watching the skies and helping astronomers answer that last question and more! As we celebrate its 15-year anniversary, let’s get you up to speed about Swift.

image

What are gamma-ray bursts and why are they interesting?

Gamma-ray bursts are the most powerful explosions in the universe. When they occur, they are about a million trillion times as bright as the Sun. But these bursts don’t last long — from a few milliseconds (we call those short duration bursts) to a few minutes (long duration). In the 1960s, spacecraft were watching for gamma rays from Earth — a sign of nuclear testing. What scientists discovered, however, were bursts of gamma rays coming from space!

Gamma-ray bursts eventually became one of the biggest mysteries in science. Scientists wanted to know: What events sparked these fleeting but powerful occurrences?

So how do gamma-ray bursts and Swift connect?

When it roared into space on a rocket, Swift’s main goals included understanding the origin of gamma-ray bursts, discovering if there were additional classes of bursts (besides the short and long ones), and figuring out what these events could tell us about the early universe.

image

With Swift as our eyes on the sky, we now know that gamma-ray bursts can be some of the farthest objects we’ve ever detected and lie in faraway galaxies. In fact, the closest known gamma-ray burst occurred more than 100 million light-years from us. We also know that these explosions are associated with some of the most dramatic events in our universe, like the collapse of a massive star or the merger of two neutron stars — the dense cores of collapsed stars.

image

Swift is still a powerful multiwavelength observatory and continues to help us solve mysteries about the universe. In 2018 it located a burst of light that was at least 10 times brighter than a typical supernova. Last year Swift, along with NASA’s Fermi Gamma-ray Space Telescope, announced the discovery of a pair of distant explosions which produced the highest-energy light yet seen from gamma-ray bursts.

Swift can even study much, much closer objects like comets and asteroids!

image

Why is Swift unique?

How do we study events that happen so fast? Swift is first on the scene because of its ability to automatically and quickly turn to investigate sudden and fascinating events in the cosmos. These qualities are particularly helpful in pinpointing and studying short-lived events.

image

The Burst Alert Telescope, which is one of Swift’s three instruments, leads the hunt for these explosions. It can see one-sixth of the entire sky at one time. Within 20 to 75 seconds of detecting a gamma-ray burst, Swift automatically rotates so that its X-ray and ultraviolet telescopes can view the burst.

image

Because of the “swiftness” of the satellite, it can look at a lot in 24 hours — between 50 and 100 targets each day! Swift has new “targets-of-opportunity” to look at every day and can also look at objects for follow up observations. By doing so, it can see how events in our cosmos change over time.

How did Swift get its name?

You may have noticed that lots of spacecraft have long names that we shorten to acronyms. However, this isn’t the case for Swift. It’s named after the bird of the same name, and because of the satellite’s ability to move quickly and re-point its science instruments.

When it launched, Swift was called NASA’s Swift Observatory. But in January 2018, Swift was renamed the Neil Gehrels Swift Observatory in memory of the mission’s original principal investigator, Neil Gehrels.

image

Follow along with Swift to see a typical day in the life of the satellite:


Tags
  • andy202405
    andy202405 liked this · 1 month ago
  • detaras
    detaras liked this · 7 months ago
  • davetimwolf
    davetimwolf liked this · 9 months ago
  • tranxio
    tranxio liked this · 10 months ago
  • chocolategardenerdaze
    chocolategardenerdaze liked this · 1 year ago
  • norzairies
    norzairies liked this · 1 year ago
  • vesper-potato
    vesper-potato reblogged this · 1 year ago
  • slowlygoes-thenight
    slowlygoes-thenight reblogged this · 1 year ago
  • asongpanda1
    asongpanda1 liked this · 1 year ago
  • calmgirllolo
    calmgirllolo liked this · 1 year ago
  • rpeezyfactz310
    rpeezyfactz310 liked this · 1 year ago
  • kayakingintheeyeofthestorm
    kayakingintheeyeofthestorm reblogged this · 1 year ago
  • francocotic
    francocotic liked this · 1 year ago
  • rrric869
    rrric869 liked this · 1 year ago
  • america1971
    america1971 liked this · 1 year ago
  • daughterofapollo123
    daughterofapollo123 reblogged this · 1 year ago
  • slightlydepressing
    slightlydepressing liked this · 1 year ago
  • themelodyofsilence
    themelodyofsilence reblogged this · 1 year ago
  • spookynaturecelebritiesgarden
    spookynaturecelebritiesgarden liked this · 1 year ago
  • steff33universe
    steff33universe liked this · 1 year ago
  • blackpointgame
    blackpointgame liked this · 1 year ago
  • ladespeinada
    ladespeinada liked this · 1 year ago
  • the-drawing-spacenerd06
    the-drawing-spacenerd06 liked this · 1 year ago
  • lescoolcatto
    lescoolcatto liked this · 1 year ago
  • histsciart
    histsciart liked this · 1 year ago
  • thebsdude
    thebsdude reblogged this · 1 year ago
  • elvashayam
    elvashayam liked this · 1 year ago
  • kasumba-zubair
    kasumba-zubair liked this · 1 year ago
  • packitandgo
    packitandgo reblogged this · 1 year ago
  • cute-earth-orbiter
    cute-earth-orbiter liked this · 1 year ago
  • sugar-lamb
    sugar-lamb liked this · 1 year ago
  • eclectivecollectiveprincess
    eclectivecollectiveprincess liked this · 1 year ago
  • lily28s
    lily28s liked this · 1 year ago
  • justhereforthesherlock
    justhereforthesherlock reblogged this · 1 year ago
  • iscalledamurder
    iscalledamurder liked this · 1 year ago
  • superabi1997
    superabi1997 liked this · 1 year ago
  • beinggenerosa
    beinggenerosa liked this · 1 year ago
  • stageyeswideshut
    stageyeswideshut liked this · 1 year ago
  • mossydonut
    mossydonut liked this · 1 year ago
  • mpines230
    mpines230 liked this · 1 year ago
  • emptywires
    emptywires liked this · 1 year ago
  • thesacredwounds
    thesacredwounds liked this · 1 year ago
  • kiorle
    kiorle liked this · 1 year ago
  • wwillowinthewoodss
    wwillowinthewoodss liked this · 1 year ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags