TumbleCatch

Your gateway to endless inspiration

Xray - Blog Posts

3 years ago

We’re Upgrading Our X-ray Vision!

We’re Upgrading Our X-ray Vision!

Think X-ray vision is a superpower found only in comics and movies? Unlike Superman and Supergirl, NASA has it for real, thanks to the X-ray observatories we’ve sent into orbit.

Now the Imaging X-ray Polarimetry Explorer – IXPE for short – has shot into space to enhance our superpower!

Meet IXPE

We’re Upgrading Our X-ray Vision!

When dentists take X-ray pictures of a tooth, they use a machine that makes X-rays and captures them on a device placed on the opposite side. But X-rays also occur naturally. In astronomy, we observe X-rays made by distant objects to learn more about them.

IXPE will improve astronomers’ knowledge about some of these objects, like black holes, neutron stars, and the expanding clouds made by supernova explosions.

That’s because it will capture a piece of information about X-ray light that has only rarely been measured from space!

We’re Upgrading Our X-ray Vision!

X-ray astronomers have learned a lot about the cosmos by measuring three properties of light – when it arrives, where it’s coming from, and what energies it has (think: colors). Picture these characteristics as making up three of the four sides of a pyramid. The missing piece is a property called polarization.

Polarization tells us how organized light is. This gives astronomers additional clues about how the X-rays were made and what matter they’ve passed through on their way to us. IXPE will explore this previously hidden side of cosmic X-ray sources.

What is polarization?

We’re Upgrading Our X-ray Vision!

All light, from microwaves to gamma rays, is made from pairs of waves traveling together – one carrying electricity and the other magnetism. These two waves always vibrate at right angles (90°) to each other, with their peaks and valleys in sync, and they also vibrate at right angles to their direction of motion.

To keep things simple, we’ll illustrate only one of these waves – the one carrying electricity. If we could zoom into a typical beam of light, we’d see something like the animation above. It’s a mess, with all the wave peaks pointing in random directions.

We’re Upgrading Our X-ray Vision!

When light interacts with matter, it can become better organized. Its electric field can vibrate in a way that keeps all the wave crests pointing in the same direction, as shown above. This is polarized light.

The amount and type of polarization we detect in light tell us more about its origin, as well as any matter it interacted with before reaching us.

Let’s look at the kinds of objects IXPE will study and what it may tell us about them.

Exploring star wrecks

We’re Upgrading Our X-ray Vision!

Exploded stars create vast, rapidly expanding clouds called supernova remnants – like the Jellyfish Nebula above. It formed 4,000 years ago, but even today, the remnant’s heart can tell us about the extreme conditions following the star’s explosion.

X-rays give us a glimpse of the powerful processes at work during and after these explosions. IXPE will map remnants like this, revealing how X-rays are polarized across the entire object. This will help us better understand how these celestial cataclysms take place and evolve.

Magnifying supermagnets

We’re Upgrading Our X-ray Vision!

Some supernovae leave behind neutron stars. They form when the core of a massive star collapses, squeezing more than our Sun’s mass into a ball only as wide as a city.

The collapse greatly ramps up their spin. Some neutron stars rotate hundreds of times a second! Their magnetic fields also get a tremendous boost, becoming trillions of times stronger than Earth’s. One type, called a magnetar, boasts the strongest magnetic fields known – a thousand times stronger than typical neutron stars.

These superdense, superspinning supermagnets frequently erupt in powerful outbursts (illustrated above) that emit lots of X-rays. IXPE will tell astronomers more about these eruptions and the extreme magnetic fields that help drive them.

Closing in on black holes

We’re Upgrading Our X-ray Vision!

Black holes can form when massive stars collapse or when neutron stars crash together. Matter falling toward a black hole quickly settles into a hot, flat structure called an accretion disk. The disk’s inner edge gradually drains into the black hole. Notice how odd the disk appears from certain angles? This happens because the black hole’s extreme gravity distorts the path of light coming from the disk’s far side.

X-rays near the black hole can bounce off the disk before heading to our telescopes, and this polarizes the light. What’s exciting is that the light is polarized differently across the disk. The differences depend both on the energies of the X-rays and on what parts of the disk they strike. IXPE observations will provide astronomers with a detailed picture of what’s happening around black holes in our galaxy that can’t be captured in any other way.

By tracking how X-ray light is organized, IXPE will add a previously unseen dimension to our X-ray vision. It’s a major upgrade that will give astronomers a whole new perspective on some of the most intriguing objects in the universe.

Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags