Our Neil Gehrels Swift Observatory — Swift for short — is celebrating its 20th anniversary! The satellite studies cosmic objects and events using visible, ultraviolet, X-ray, and gamma-ray light. Swift plays a key role in our efforts to observe our ever-changing universe. Here are a few cosmic surprises Swift has caught over the years — plus one scientists hope to see.
Swift was designed to detect and study gamma-ray bursts, the most powerful explosions in the universe. These bursts occur all over the sky without warning, with about one a day detected on average. They also usually last less than a minute – sometimes less than a few seconds – so you need a telescope like Swift that can quickly spot and precisely locate these new events.
In the fall of 2022, for example, Swift helped study a gamma-ray burst nicknamed the BOAT, or brightest of all time. The image above depicts X-rays Swift detected for 12 days after the initial flash. Dust in our galaxy scattered the X-ray light back to us, creating an extraordinary set of expanding rings.
Tidal disruptions happen when an unlucky star strays too close to a black hole. Gravitational forces break the star apart into a stream of gas, as seen above. Some of the gas escapes, but some swings back around the black hole and creates a disk of debris that orbits around it.
These events are rare. They only occur once every 10,000 to 100,000 years in a galaxy the size of our Milky Way. Astronomers can’t predict when or where they’ll pop up, but Swift’s quick reflexes have helped it observe several tidal disruption events in other galaxies over its 20-year career.
Usually, we think of galaxies – and most other things in the universe – as changing so slowly that we can’t see the changes. But about 10% of the universe’s galaxies are active, which means their black hole-powered centers are very bright and have a lot going on. They can produce high-speed particle jets or flares of light. Sometimes scientists can catch and watch these real-time changes.
For example, for several years starting in 2018, Swift and other telescopes observed changes in a galaxy’s X-ray and ultraviolet light that led them to think the galaxy’s magnetic field had flipped 180 degrees.
Magnetars are a type of neutron star, a very dense leftover of a massive star that exploded in a supernova. Magnetars have the strongest magnetic fields we know of — up to 10 trillion times more intense than a refrigerator magnet and a thousand times stronger than a typical neutron star’s.
Occasionally, magnetars experience outbursts related to sudden changes in their magnetic fields that can last for months or even years. Swift detected such an outburst from a magnetar in 2020. The satellite’s X-ray observations helped scientists determine that the city-sized object was rotating once every 10.4 seconds.
Swift has also studied comets in our own solar system. Comets are town-sized snowballs of frozen gases, rock, and dust. When one gets close to our Sun, it heats up and spews dust and gases into a giant glowing halo.
In 2019, Swift watched a comet called 2I/Borisov. Using ultraviolet light, scientists calculated that Borisov lost enough water to fill 92 Olympic-size swimming pools! (Another interesting fact about Borisov: Astronomers think it came from outside our solar system.)
Swift has studied a lot of cool events and objects over its two decades, but there are still a few events scientists are hoping it’ll see.
Swift is an important part of a new era of astrophysics called multimessenger astronomy, which is where scientists use light, particles, and space-time ripples called gravitational waves to study different aspects of cosmic events.
In 2017, Swift and other observatories detected light and gravitational waves from the same event, a gamma-ray burst, for the first time. But what astronomers really want is to detect all three messengers from the same event.
As Swift enters its 20th year, it’ll keep watching the ever-changing sky.
Keep up with Swift through NASA Universe on X, Facebook, and Instagram. And make sure to follow us on Tumblr for your regular dose of space!
On Friday, March 29, Christina Koch and Anne McClain were scheduled to perform a spacewalk together to upgrade the power systems of the International Space Station. It would have been the first all-female spacewalk in human history. While disappointing to many people, after the last spacewalk was completed on March 22, NASA changed the assignments to protect the safety of the crew and the timing of the mission. Now, Christina Koch and Nick Hague will be performing this upcoming spacewalk, leaving lots of people wondering: What’s the deal?
Spacesuits are not “one size fits all.” We do our best to anticipate the spacesuit sizes each astronaut will need, based on the spacesuit size they wore in training on the ground, and in some cases astronauts train in multiple sizes.
McClain trained in both a medium and a large on Earth. However, living in microgravity can change the size of your body! In fact, Anne McClain has grown two inches since she launched to the Space Station.
McClain realized that the medium she wore during the March 22 spacewalk was a better fit for her in space. She had planned to wear a large during the March 29 spacewalk.
In a tweet, McClain explained: “This decision was based on my recommendation. Leaders must make tough calls, and I am fortunate to work with a team who trusts my judgement. We must never accept a risk that can instead be mitigated. Safety of the crew and execution of the mission come first.”
To provide each astronaut the best fitting spacesuit during their spacewalks, Koch will wear the medium torso on March 29, and McClain will wear it again on April 8.
The spacesuit is a mini spaceship that keeps our astronauts alive while they are spacewalking!
Astronauts train several hours on Earth in the Neutral Buoyancy Lab for every hour they spend spacewalking. Spacewalks are the most physically demanding thing we ask astronauts to do, which is why an optimally fitted spacesuit is important to completing the assigned tasks and overall mission!
We do have enough torsos. The spacesuit takes into account more than 80 different body measurements to be configured for each astronaut. The suit has three sizes of upper torso, eight sizes of adjustable elbows, over 65 sizes of gloves, two sizes of adjustable waists, five sizes of adjustable knees and a vast array of padding options for almost every part of the body.
In space, we have two medium hard upper torsos, two larges and two extra larges; however, one of the mediums and one of the extra larges are spares that would require 12 hours of crew time for configuration.
Configuring the spare medium is a very methodical and meticulous process to ensure the intricate life support system — including the controls, seals, and hoses for the oxygen, water and power as well as the pressure garment components — are reassembled correctly with no chance of leaks.
Nothing is more important than the safety of our crew!
12 hours might not seem like a long time, but the space station is on a very busy operational schedule. An astronaut's life in space is scheduled for activities in five minute increments. Their time is scheduled to conduct science experiments, maintain their spaceship and stay healthy (they exercise two hours a day to keep their bones and muscles strong!).
The teams don’t want to delay this spacewalk because two resupply spacecraft – Northrop Grumman Cygnus and SpaceX cargo Dragon – are scheduled to launch to the space station in the second half of April. That will keep the crew very busy for a while!
NASA does not make assignments based on gender.
The first female space shuttle commander, the first female space station commander and the first female spacewalker were all chosen because they the right individuals for the job, not because they were women. It is not unusual to change spacewalk assignments as lessons are learned during operations in space.
McClain became the 13th female spacewalker on March 22, and Koch will be the 14th this Friday – both coincidentally during Women’s History Month! Women also are filling two key roles in Mission Control: Mary Lawrence as the lead flight director and Jaclyn Kagey as the lead spacewalk officer.
An all-female spacewalk is inevitable! As the percentage of women who have become astronauts increases, we look forward to celebrating the first spacewalk performed by two women! McClain, Koch (and Hague!) are all part of the first astronaut class that was 50 percent women, and five of the 11 members of the 2017 astronaut candidate class are also women.
You can watch the upcoming spacewalk on March 29 at 6:30 ET, which is one in a series to upgrade the station’s power technology with new batteries that store power from the solar arrays for the station to use when it is in orbital night.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s no secret the Sun affects us here on Earth in countless ways, from causing sunburns to helping our houseplants thrive. The Sun affects other objects in space, too, like asteroids! It can keep them in place. It can move them. And it can even shape them.
Asteroids embody the story of our solar system’s beginning. Jupiter’s Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.
Over the next 12 years, NASA’s Lucy mission will visit eight asteroids—including seven Trojans— to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about 3.5 years to reach its first destination.
How does the Sun affect what Lucy might find?
Credits: Astronomical Institute of CAS/Petr Scheirich
The Sun makes up 99.8% of the solar system’s mass and exerts a strong gravitational force as a result. In the case of the Trojan asteroids that Lucy will visit, their very location in space is dictated in part by the Sun’s gravity. They are clustered at two Lagrange points. These are locations where the gravitational forces of two massive objects—in this case the Sun and Jupiter—are balanced in such a way that smaller objects (like asteroids or satellites) stay put relative to the larger bodies. The Trojans lead and follow Jupiter in its orbit by 60° at Lagrange points L4 and L5.
The Sun can move and spin asteroids with light! Like many objects in space, asteroids rotate. At any given moment, the Sun-facing side of an asteroid absorbs sunlight while the dark side sheds energy as heat. When the heat escapes, it creates an infinitesimal amount of thrust, pushing the asteroid ever so slightly and altering its rotational rate. The Trojans are farther from the Sun than other asteroids we’ve studied before, and it remains to be seen how sunlight affects their movement.
The Sun can break asteroids, too. Rocks expand as they warm and contract when they cool. This repeated fluctuation can cause them to crack. The phenomenon is more intense for objects without atmospheres, such as asteroids, where temperatures vary wildly. Therefore, even though the Trojans are farther from the Sun than rocks on Earth, they’ll likely show more signs of thermal fracturing.
Like everything in our solar system, asteroids are battered by the solar wind, a steady stream of particles, magnetic fields, and radiation that flows from the Sun. For the most part, Earth’s magnetic field protects us from this bombardment. Without magnetic fields or atmospheres of their own, asteroids receive the brunt of the solar wind. When incoming particles strike an asteroid, they can kick some material off into space, changing the fundamental chemistry of what’s left behind.
Follow along with Lucy’s journey with NASA Solar System on Instagram, Facebook, and Twitter, and be sure to tune in for the launch at 5 a.m. EDT (09:00 UTC) on Saturday, Oct. 16 at nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space!
A new image from NASA's James Webb Space Telescope reveals a remarkable cosmic sight: at least 17 concentric dust rings emanating from a pair of stars. Just 5,300 light-years from Earth, the star duo are collectively known as Wolf-Rayet 140. Each ring was created when the two stars came close together and their stellar winds (streams of gas they blow into space) collided so forcefully that some of the gas was compressed into dust. The stars' orbits bring them together about once every eight years, and forms a half-shell of dust that looks like a ring from our perspective. Like a cosmic fingerprint, the 17 rings reveal more than a century of stellar interactions—and the "fingerprint" belonging to Wolf-Rayet 140 may be equally unique. Other Wolf-Rayet stars produce dust, but no other pair are known to produce rings quite like Wolf-Rayet 140.
Learn more about Wolf-Rayet 140.
Make sure to follow us on Tumblr for your regular dose of space!
Today we celebrate the birthday of one of America’s original U.S. aviation pioneers — Orville Wright. But this year we also celebrate the pioneers of right now — the women and men of NASA who are changing the face of aviation by going “X.” We’re starting the design and build of a series of piloted experimental aircraft – X-planes – for the final proof that new advanced tech and revolutionary shapes will give us faster, quieter, cleaner ways to get from here to there.
Since the early days of aviation, X-planes have been used to demonstrate new technologies in their native environment – flying through the air aboard an aircraft that’s shaped differently from the tube-and-wing of today. X-planes are the final step after ground tests. They provide valuable data that can lead to changes in regulation, design, operations, and options for travel. Two of the most famous historical X-planes are the Bell X-1 and the X-15.
Because of the loud, jarring sonic boom. Commercial supersonic flight over land and, therefore over communities, is currently prohibited. Our supersonic X-plane will fly “quiet”; there’ll still be a sonic boom but it’ll sound more like a soft “thump.” The Low Boom Flight Demonstration X-plane, scheduled for first flight in 2021 and to begin community overflight testing in 2022, will provide the technical and human response data to federal and international regulators so they can consider lifting the ban. If that happens, someday commercial supersonic passenger flights between U.S. coasts would be less than three hours.
This is a preliminary design of the Low Boom Flight Demonstration X-plane. Its shape is carefully tailored to prevent the formation of a loud sonic boom.
Yes. Our next X-plane will be one that flies at regular speed, but has advanced design technologies and a nontraditional shape that drop perceived noise level by more than half. It will also reduce fuel consumption by 60-80 percent, and cut emissions by more than 80 percent. Design of this piloted X-plane is expected to begin around 2020.
This possible X-plane design is a blended wing body, which reduces drag and increases lift, and also reduces noise because the engines are placed above the fuselage.
Probably. All- or hybrid-electric aircraft that can carry 12 – 120 passengers are becoming more likely. For a larger aircraft and possible future X-plane, NASA is studying how to use electric power generated by the engines to drive a large fan in a tail-cone and get additional thrust for takeoff and reduce fuel use.
This possible future subsonic X-plane would use electricity to power a large fan in the tail-cone, providing extra thrust at takeoff.
We – along with our government, industry and academic partners – have begun the great aviation transformation. And you’ll witness every important moment of our X-plane stories, here and on every #NationalAviationDay.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
How exactly will it work? And whats the goal of the project?
What range/area will Perseverance be able to cover on the Martian surface? I'm assuming it's greater than the other rovers but by how much?
During a recent close flyby of the gas giant Jupiter, our Juno spacecraft captured this stunning series of images showing swirling cloud patterns on the planet’s south pole. At first glance, the series might appear to be the same image repeated. But closer inspection reveals slight changes, which are most easily noticed by comparing the far-left image with the far-right image.
Directly, the images show Jupiter. But, through slight variations in the images, they indirectly capture the motion of the Juno spacecraft itself, once again swinging around a giant planet hundreds of millions of miles from Earth.
Juno captured this color-enhanced time-lapse sequence of images on Feb. 7 between 10:21 a.m. and 11:01 a.m. EST. At the time, the spacecraft was between 85,292 to 124,856 miles (137,264 to 200,937 kilometers) from the tops of the clouds of the planet with the images centered on latitudes from 84.1 to 75.5 degrees south.
Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
A room with Earth views! 🌎 Earlier this week, astronaut Ricky Arnold captured this spectacular view of our home planet while he was orbiting at a speed of 17,500 miles per hour. If you’re wondering where in the world this video was taken, it starts as the International Space Station is above San Francisco and moving southward through the Americas.
Each day, the station completes 16 orbits of our home planet as the six humans living and working aboard our orbiting laboratory conduct important science and research. Their work will not only benefit life here on Earth, but will help us venture deeper into space than ever before.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
At NASA, we’re not immune to effects of climate change. The seas are rising at NASA coastal centers – the direct result of warming global temperatures caused by human activity. Several of our centers and facilities were built near the coast, where there aren’t as many neighbors, as a safety precaution. But now the tides have turned and as sea levels rise, these facilities are at greater risk of flooding and storms.
Global sea level is increasing every year by 3.3 millimeters, or just over an eighth of an inch, and the rate of rise is speeding up over time. The centers within range of rising waters are taking various approaches to protect against future damage.
Kennedy Space Center in Florida is the home of historic launchpad 39A, where Apollo astronauts first lifted off for their journey to the Moon. The launchpad is expected to flood periodically from now on.
Like Kennedy, Wallops Flight Facility on Wallops Island, Virginia has its launchpads and buildings within a few hundred feet of the Atlantic Ocean. Both locations have resorted to replenishing the beaches with sand as a natural barrier to the sea.
Native vegetation is planted to help hold the sand in place, but it needs to be replenished every few years.
At the Langley Research Center in Hampton, Virginia, instead of building up the ground, we’re hardening buildings and moving operations to less flood-prone elevations. The center is bounded by two rivers and the Chesapeake Bay.
The effects of sea level rise extend far beyond flooding during high tides. Higher seas can drive larger and more intense storm surges – the waves of water brought by tropical storms.
In 2017, Hurricane Harvey brought flooding to the astronaut training facility at Johnson Space Center in Houston, Texas. Now we have installed flood resistant doors, increased water intake systems, and raised guard shacks to prevent interruptions to operations, which include astronaut training and mission control.
Our only facility that sits below sea level already is Michoud Assembly Facility in New Orleans. Onsite pumping systems protected the 43-acre building, which has housed Saturn rockets and the Space Launch System, from Hurricane Katrina. Since then, we’ve reinforced the pumping system so it can now handle double the water capacity.
Ames Research Center in Silicon Valley is going one step farther and gradually relocating farther south and to several feet higher in elevation to avoid the rising waters of the San Francisco Bay.
Understanding how fast and where seas will rise is crucial to adapting our lives to our changing planet.
We have a long-standing history of tracking sea level rise, through satellites like the TOPEX-Poseidon and the Jason series, working alongside partner agencies from the United States and other countries.
We just launched the Sentinel-6 Michael Freilich satellite—a U.S.-European partnership—which will use electromagnetic signals bouncing off Earth’s surface to make some of the most accurate measurements of sea levels to date.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Hubble Space Telescope just found the farthest individual star ever seen to date!
Nicknamed “Earendel” (“morning star” in Old English), this star existed within the first billion years after the universe’s birth in the big bang. Earendel is so far away from Earth that its light has taken 12.9 billion years to reach us, far eclipsing the previous single-star record holder whose light took 9 billion years to reach us.
Though Earendel is at least 50 times the mass of our Sun and millions of times as bright, we’d normally be unable to see it from Earth. However, the mass of a huge galaxy cluster between us and Earendel has created a powerful natural magnifying glass. Astronomers expect that the star will be highly magnified for years.
Earendel will be observed by NASA’s James Webb Space Telescope. Webb's high sensitivity to infrared light is needed to learn more about this star, because its light is stretched to longer infrared wavelengths due to the universe's expansion.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts