TumbleCatch

Your gateway to endless inspiration

Investigation - Blog Posts

11 years ago

He gets schooling behind bars; their father is "devastated" amid reports of longtime family turmoil


Tags
6 years ago

Chemical Space Gardens

You know that colorful crystal garden you grew as a kid?

Yeah, we do that in space now. 

Chemical Gardens, a new investigation aboard the International Space Station takes a classic science experiment to space with the hope of improving our understanding of gravity’s impact on their structural formation.

image

Here on Earth, chemical gardens are most often used to teach students about things like chemical reactions.

image

Chemical gardens form when dissolvable metal salts are placed in an aqueous solution containing anions such as silicate, borate, phosphate, or carbonate.

image

Delivered to the space station aboard SpaceX’S CRS-15 cargo mission, the samples for this experiment will be processed by crew members and grown throughout Expedition 56 before returning to Earth.

image

Results from this investigation could provide a better understanding of cement science and improvements to biomaterial devices used for scaffolding, for use both in space and on Earth. 

Follow the growth of the chemical garden and the hundreds of other investigations constantly orbiting above you by following @ISS_Research on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

SpaceX Dragon breathes Astronomical Amounts of Science to Space Station

SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida. 

image

This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more. 

image

Here are some highlights of research that will be delivered to the station:

ZBLAN Fiber Optics Tested in Space!

The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.

image

When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire. 

Total and Spectral Solar Irradiance Sensor is Totally Teaching us About Earth’s Climate

The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.

image

Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.  

Sensor Monitors Space Station Environment for Space Junk

The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.

image

Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola. 

Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.

Self-Assembling and Self-Replicating Materials in Space!

Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions. 

image

The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium. 

Melting Plastics in Microgravity

The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.

image

These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.  

Studying Slime (or…Algae, at Least) on the Space Station

Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.

image

The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important. 

Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!

For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.


Tags
7 years ago

Resupply Mission Brings Mealworms and Mustard Seeds to Space Station

Orbital ATK will launch its Cygnus cargo spacecraft to the International Space Station on November 11, 2017 from Wallops Flight Facility in Virginia. It will be packed with cargo and scientific experiments for the six humans currently living and working on the orbiting laboratory.

image

The cargo spacecraft is named the S.S. Gene Cernan after former NASA astronaut Eugene Cernan, who is the last man to have walked on the moon.

image

Here are some of the really neat science and research experiments that will be delivered to the station: 

What’s Microgravity Got to do with Bacterial Antibiotics?

Antibiotic resistance could pose a danger to astronauts, especially since microgravity has been shown to weaken human immune response. E. coli AntiMicrobial Satellite (EcAMSat) will study microgravity’s effect on bacterial antibiotic resistance.

image

Results from this experiment could help us determine appropriate antibiotic dosages to protect astronaut health during long-duration human spaceflight and help us understand how antibiotic effectiveness may change as a function of stress on Earth.

Laser Beams…Not on Sharks…But on a CubeSat

Traditional laser communication systems use transmitters that are far too large for small spacecraft. The Optical Communication Sensor Demonstration (OCSD) tests the functionality of laser-based communications using CubeSats that provide a compact version of the technology.

image

Results from OCSD could lead to improved GPS and other satellite networks on Earth and a better understanding of laser communication between small satellites in low-Earth orbit.

This Hybrid Solar Antenna Could Make Space Communication Even Better 

As space exploration increases, so will the need for improved power and communication technologies. The Integrated Solar Array and Reflectarray Antenna (ISARA), a hybrid power and communication solar antenna that can send and receive messages, tests the use of this technology in CubeSat-based environmental monitoring. 

image

ISARA may provide a solution for sending and receiving information to and from faraway destinations, both on Earth and in space. 

More Plants in Space!  

Ready for a mouthful…The Biological Nitrogen Fixation in Microgravity via Rhizobium-Legume Symbiosis…aka the Biological Nitrogen Fixation experiment, will examine how low-gravity conditions affect the nitrogen fixation process of the Microclover legume (a plant in the pea family). Nitrogen fixation is a process where nitrogen in the atmosphere is converted into ammonia. This crucial element of any ecosystem is also a natural fertilizer that is necessary for most types of plant growth.

image

This experiment could tell us about the space viability of the legume’s ability to use and recycle nutrients and give researchers a better understanding of this plant’s potential uses on Earth.

What Happens When Mealworms Live in Space?

Mealworms are high in nutrients and one of the most popular sources of alternative protein in developing countries. The Effects of Microgravity on the Life Cycle of Tenebrio Molitor (Tenebrio Molitor) investigation studies how the microgravity environment affects the mealworm life cycle.

image

In addition to alternative protein research, this investigation will provide information about animal growth under unique conditions.

Mustard Seeds in Microgravity 

The Life Cycle of Arabidopsis thaliana in Microgravity experiment studies the formation and functionality of the Arabidopsis thaliana, a mustard plant with a genome that is fully mapped, in microgravity conditions.

image

The results from this investigation could contribute to an understanding of plant and crop growth in space.

Follow @ISS_Research on Twitter for more information about the science happening on space station. 

Watch the launch live HERE on Nov. 11, liftoff is scheduled for 7:37 a.m. EDT!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

What’s On Board the Next SpaceX Cargo Launch?

Cargo and supplies are scheduled to launch to the International Space Station on Monday, July 18 at 12:45 a.m. EDT. The SpaceX Dragon cargo spacecraft will liftoff from our Kennedy Space Center in Florida.

image

Among the arriving cargo is the first of two international docking adapters, which will allow commercial spacecraft to dock to the station when transporting astronauts in the near future as part of our Commercial Crew Program.

image

This metallic ring, big enough for astronauts and cargo to fit through represents the first on-orbit element built to the docking measurements that are standardized for all the spacecraft builders across the world.

image

Its first users are expected to be the Boeing Starliner and SpaceX Crew Dragon spacecraft, which are both now in development.

What About the Science?!

Experiments launching to the station range from research into the effects of microgravity on the human body, to regulating temperature on spacecraft. Take a look at a few:

A Space-based DNA Sequencer

image

DNA testing aboard the space station typically requires collecting samples and sending them back to Earth to be analyzed. Our Biomolecule Sequencer Investigation will test a new device that will allow DNA sequencing in space for the first time! The samples in this first test will be DNA from a virus, a bacteria and a mouse.

How big is it? Picture your smartphone…then cut it in half. This miniature device has the potential to identify microbes, diagnose diseases and evaluate crew member health, and even help detect DNA-based life elsewhere in the solar system.

OsteoOmics

What’s On Board The Next SpaceX Cargo Launch?

OsteoOmics is an experiment that will investigate the molecular mechanisms that dictate bone loss in microgravity. It does this by examining osteoblasts, which form bone; and osteoclasts, which dissolves bone. New ground-based studies are using magnetic levitation equipment to simulate gravity-related changes. This experiment hopes to validate whether this method accurately simulates the free-fall conditions of microgravity.

Results from this study could lead to better preventative care or therapeutic treatments for people suffering bone loss, both on Earth and in space!

Heart Cells Experiment

image

The goals of the Effects of Microgravity on Stem Cell-Derived Heart Cells (Heart Cells) investigation include increasing the understanding of the effects of microgravity on heart function, the improvement of heart disease modeling capabilities and the development of appropriate methods for cell therapy for people with heart disease on Earth.

Phase Change Material Heat Exchanger (PCM HX)

image

The goal of the Phase Change Material Heat Exchanger (PCM HX) project is to regulate internal spacecraft temperatures. Inside this device, we're testing the freezing and thawing of material in an attempt to regulate temperature on a spacecraft. This phase-changing material (PCM) can be melted and solidified at certain high heat temperatures to store and release large amounts of energy.

Watch Launch!

Live coverage of the SpaceX launch will be available starting at 11:30 p.m. EDT on Sunday, July 17 via NASA Television. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags