TumbleCatch

Your gateway to endless inspiration

Optical - Blog Posts

3 months ago

All-Star Moments in Space Communications and Navigation

How do we get information from missions exploring the cosmos back to humans on Earth? Our space communications and navigation networks – the Near Space Network and the Deep Space Network – bring back science and exploration data daily.

Here are a few of our favorite moments from 2024.

An image of the plaque presented to Missy Elliott. The background is blue and has a black box in it. The black box is outlined in white. Within the black box is a colorful image of Venus, taken by Magellan, a NASA meatball patch, and some text.

Venus appears in shades of the rainbow, which correspond to different planetary radii, measured in kilometers.

The text says, "Presented to Missy Elliott from the National Aeronautics and Space Administration. Lyrics from your iconic song "The Rain (Supa Dupa Fly)" embarked on a historic journey on July 12, 2024, traveling approximately 158 million miles from Earth to Venus, to become the first hip-hop song transmitted to deep space. This groundbreaking achievement marks a significant milestone in the fusion of music, technology, and space exploration." Credit: NASA

1. Hip-Hop to Deep Space

The stars above and on Earth aligned as lyrics from the song “The Rain (Supa Dupa Fly)” by hip-hop artist Missy Elliott were beamed to Venus via NASA’s Deep Space Network. Using a 34-meter (112-foot) wide Deep Space Station 13 (DSS-13) radio dish antenna, located at the network’s Goldstone Deep Space Communications Complex in California, the song was sent at 10:05 a.m. PDT on Friday, July 12 and traveled about 158 million miles from Earth to Venus — the artist’s favorite planet. Coincidentally, the DSS-13 that sent the transmission is also nicknamed Venus!

An artist’s concept of NASA’s PACE mission in space downlinking data to Earth over radio waves. The radio waves are depicted as a green, wavy line. Earth is partially in view, with blue and white tones depicting the ocean and clouds. As the GIF progresses, a grey line juts out from the spacecraft with callout boxes showing real imagery taken by the mission. Credit: NASA/Kasey Dillahay

NASA's PACE mission transmitting data to Earth through NASA's Near Space Network.

2. Lemme Upgrade You

Our Near Space Network, which supports communications for space-based missions within 1.2 million miles of Earth, is constantly enhancing its capabilities to support science and exploration missions. Last year, the network implemented DTN (Delay/Disruption Tolerant Networking), which provides robust protection of data traveling from extreme distances. NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission is the first operational science mission to leverage the network’s DTN capabilities. Since PACE’s launch, over 17 million bundles of data have been transmitted by the satellite and received by the network’s ground station.

Photos of different pets, each with a thick pink border, are arranged along red lines that represent laser links sent from Earth to a satellite that houses the Laser Communications Relay Demonstration (LCRD) at right, and finally to the International Space Station (left). Credit: NASA/Dave Ryan

A collage of the pet photos sent over laser links from Earth to LCRD and finally to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the International Space Station. Animals submitted include cats, dogs, birds, chickens, cows, snakes, and pigs.

3. Who Doesn’t Love Pets?

Last year, we transmitted hundreds of pet photos and videos to the International Space Station, showcasing how laser communications can send more data at once than traditional methods. Imagery of cherished pets gathered from NASA astronauts and agency employees flowed from the mission ops center to the optical ground stations and then to the in-space Laser Communications Relay Demonstration (LCRD), which relayed the signal to a payload on the space station. This activity demonstrated how laser communications and high-rate DTN can benefit human spaceflight missions.

A gif representing the trajectory of 4K video footage routed from the PC-12 aircraft to an optical ground station in Cleveland. It was then sent from an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico, then NASA’s Laser Communications Relay Demonstration spacecraft, and finally relayed to the ILLUMA-T payload on the International Space Station. The footage transfer is represented by a red dotted line that moves between the points mentioned previously. Credit: NASA/Morgan Johnson

4K video footage was routed from the PC-12 aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico. The signals were then sent to NASA’s Laser Communications Relay Demonstration spacecraft and relayed to the ILLUMA-T payload on the International Space Station.

4. Now Streaming

A team of engineers transmitted 4K video footage from an aircraft to the International Space Station and back using laser communication signals. Historically, we have relied on radio waves to send information to and from space. Laser communications use infrared light to transmit 10 to 100 times more data than radio frequency systems. The flight tests were part of an agency initiative to stream high-bandwidth video and other data from deep space, enabling future human missions beyond low-Earth orbit.

An artist’s concept image representing the Near Space Network’s regime. In the foreground, the Moon is shown with depictions of lunar assets orbiting and on the surface in a bright green color. In the distance, you can see Earth peering over the Moon’s crest. Green lines connect assets on the Moon and orbiting Earth to represent the concept of space networking. Mars can be seen in the black depths of space, far behind Earth. Credit: NASA/Dave Ryan

The Near Space Network provides missions within 1.2 million miles of Earth with communications and navigation services.

5. New Year, New Relationships

At the very end of 2024, the Near Space Network announced multiple contract awards to enhance the network’s services portfolio. The network, which uses a blend of government and commercial assets to get data to and from spacecraft, will be able to support more missions observing our Earth and exploring the cosmos. These commercial assets, alongside the existing network, will also play a critical role in our Artemis campaign, which calls for long-term exploration of the Moon.

A yellow line painted on the asphalt draws your eye to a SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from NASA’s Kennedy Space. Flames emerge from the rocket, making a bright column of light that shines in the bright blue sky. Clouds of vapor billow outward. Credit: SpaceX

On Monday, Oct. 14, 2024, at 12:06 p.m. EDT, a SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

6. 3, 2, 1, Blast Off!

Together, the Near Space Network and the Deep Space Network supported the launch of Europa Clipper. The Near Space Network provided communications and navigation services to SpaceX’s Falcon Heavy rocket, which launched this Jupiter-bound mission into space! After vehicle separation, the Deep Space Network acquired Europa Clipper’s signal and began full mission support. This is another example of how these networks work together seamlessly to ensure critical mission success.

Engineer Adam Gannon turns a dial on a rectangular machine, stacked on top of another machine with a screen. In front of him is a small rectangular structure with a circuit board lying horizontally and many attached wires. Credit: NASA

Engineer Adam Gannon works on the development of Cognitive Engine-1 in the Cognitive Communications Lab at NASA’s Glenn Research Center.

7. Make Way for Next-Gen Tech

Our Technology Education Satellite program organizes collaborative missions that pair university students with researchers to evaluate how new technologies work on small satellites, also known as CubeSats. In 2024, cognitive communications technology, designed to enable autonomous space communications systems, was successfully tested in space on the Technology Educational Satellite 11 mission. Autonomous systems use technology reactive to their environment to implement updates during a spaceflight mission without needing human interaction post-launch.

A nighttime image shows green grassy hills with six white radio frequency antennas spread out over the area. All six antennas that are part of the Madrid Deep Space Communications Complex have red lights on in the center of each dish and are pointing to the right. Two antennas are farther back along the hills, while the other four are grouped closer together toward the right of the image. The four grouped antennas are more illuminated with light coming from smaller buildings around them on the ground. Credit: MDSCC/INTA, Francisco “Paco” Moreno

A first: All six radio frequency antennas at the Madrid Deep Space Communication Complex, part of NASA’s Deep Space Network (DSN), carried out a test to receive data from the agency’s Voyager 1 spacecraft at the same time.

8. Six Are Better Than One

On April 20, 2024, all six radio frequency antennas at the Madrid Deep Space Communication Complex, part of our Deep Space Network, carried out a test to receive data from the agency’s Voyager 1 spacecraft at the same time. Combining the antennas’ receiving power, or arraying, lets the network collect the very faint signals from faraway spacecraft.

Here’s to another year connecting Earth and space.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
A time-lapse clip of a satellite dish. As it goes from day to night, the satellite changes position. Credit: NASA

9 Out-of-This-World Moments for Space Communications & Navigation in 2023

How do astronauts and spacecraft communicate with Earth?

By using relay satellites and giant antennas around the globe! These tools are crucial to NASA’s space communications networks: the Near Space Network and the Deep Space Network, which bring back science and exploration data every day.

It’s been a great year for our space communications and navigation community, who work to maintain the networks and enhance NASA’s capabilities. Keep scrolling to learn more about our top nine moments.

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA's Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company's 29th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 8:28 p.m. EST.

1. In November, we launched a laser communications payload, known as ILLUMA-T, to the International Space Station. Now, ILLUMA-T and the Laser Communications Relay Demonstration (LCRD) are exchanging data and officially complete NASA’s first two-way, end-to-end laser relay system. Laser communications can send more data at once than traditional radio wave systems – think upgrading from dial-up to fiber optic internet. ILLUMA-T and LCRD are chatting at 1.2 gigabits per second (Gbps). At that rate, you could download an average movie in under a minute.

NASA’s InSight lander sits covered in dust on Mars’ copper-brown surface in a “selfie” style image. Credit: NASA

NASA’s InSight lander captured this selfie on Mars on April 24, 2022, the 1,211th Martian day, or sol, of the mission.

2. Data analyzed in 2023 from NASA’s retired InSight Mars lander provided new details about how fast the Red Planet rotates and how much it wobbles. Scientists leveraged InSight’s advanced radio technology, upgrades to the Deep Space Network, and radio signals to determine that Mars’ spin rate is increasing, while making the most precise measurements ever of Mars’ rotation.

This image is an artist rendering. A dark blue and orange background containing the Pathfinder Technology Demonstrator-3 (PTD-3) hovering in low Earth orbit relaying a red laser communications link down to an image of the Jet Propulsion Laboratory’s optical ground station in Table Mountain California. This image of the ground station is located on top of a graphic of Earth. Credit: NASA/Dave Ryan

TBIRD is demonstrating a direct-to-Earth laser communications link from low Earth orbit to a ground station on Earth.

3. We set a new high record! The TeraByte InfraRed Delivery (TBIRD) payload – also demonstrating laser communications like ILLUMA-T and LCRD – downlinked 4.8 terabytes of data at 200 Gbps in a single 5-minute pass. This is the highest data rate ever achieved by laser communications technology. To put it in perspective a single terabyte is the equivalent of about 500 hours of high-definition video.

A giant 34-meter antenna, surrounded by rolling green hills, points towards a bright blue sky in Canberra, Australia. Credit: NASA

A 34-meter (112-foot) wide antenna at Canberra Deep Space Communications Complex near Canberra, Australia.

4. This year we celebrated the Deep Space Network’s 60th anniversary. This international array of antennas located at three complexes in California, Spain, and Australia allow us to communicate with spacecraft at the Moon and beyond. Learn more about the Deep Space Network’s legacy and future advancements.

An artist's rendering depicts two astronauts on the Moon's surface. In the left foreground, a gloved astronaut hand holds a navigation device. To the right, an astronaut kneels on the lunar surface. In the background, a spacecraft sits on the Moon’s surface, partially hidden by the navigation device in the foreground. A very pale blue dot, Earth, sits in the middle of a dark blue sky. Credit: NASA/Reese Patillo

An illustration of the LunaNet architecture. LunaNet will bring internet-like services to the Moon.

5. We are bringing humans to the Moon with Artemis missions. During expeditions, astronauts exploring the surface are going to need internet-like capabilities to talk to mission control, understand their routes, and ensure overall safety. The space comm and nav group is working with international partners and commercial companies to develop LunaNet, and in 2023, the team released Draft LunaNet Specification Version 5, furthering development.

This image is an artist rendering. NASA’s Laser Communications Relay Demonstration, or LCRD, is shown floating in front of a blue star-filled space background on the right side of the image, while the Earth is shown in the distance on the left. LCRD is surrounded by three spacecraft in space and two ground stations on Earth. Communications beams are connecting LCRD to the surrounding spacecraft and ground stations. Red beams, representing laser communications, connect LCRD to the Gateway, the International Space Station, and a laser communications ground station on Earth. Blue beams, representing radio frequency communications, connect LCRD to a science mission spacecraft, the International Space Station, and a radio frequency ground station on Earth. A small half-Moon is visible in the top left corner of the image. Credit: NASA

The High-Rate Delay Tolerant Networking node launched to the International Space Station in November and will act as a high-speed path for data.

6. In addition to laser communications, ILLUMA-T on the International Space Station is also demonstrating high-rate delay/disruption tolerant networking (HDTN). The networking node is showcasing a high-speed data path and a store-and-forward technique. HDTN ensures data reaches its final destination and isn’t lost on its path due to a disruption or delay, which are frequent in the space environment.

This image is an artist rendering. A dark blue background containing small bright blue stars fills the scene. The right half of the illustration shows planet Earth surrounded by four blue satellites. The Earth is covered with many hundreds of bright blue dots and connecting lines, symbolizing communications signals traveling across the Earth’s surface. The communications lines connect to the satellites located in near-Earth orbit. Credit: NASA

The Communications Services Project (CSP) partners with commercial industry to provide networking options for future spaceflight missions.

7. The space comm and nav team is embracing the growing aerospace industry by partnering with commercial companies to provide multiple networking options for science and exploration missions. Throughout 2023, our commercialization groups engaged with over 110 companies through events, one-on-one meetings, forums, conferences, and more. Over the next decade, NASA plans to transition near-Earth services from government assets to commercial infrastructure.

In the right foreground, five people huddle around a laptop computer wearing clear protective goggles and black t-shirts. A tall, black divider with a flight operations insignia stands in the background next to a large machine. Credit: NASA

Middle and high school students solve a coding experiment during NASA's Office of STEM Engagement App Development Challenge. 

8. Every year, NASA’s Office of STEM Engagement sponsors the App Development Challenge, wherein middle and high school students must solve a coding challenge. This year, student groups coded an application to visualize the Moon’s South Pole region and display information for navigating the Moon’s surface. Our space communications and navigation experts judged and interviewed students about their projects and the top teams visited NASA’s Johnson Space Center in Houston!

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

A SpaceX Falcon 9 rocket soars upward after liftoff at the pad at 3:27 a.m. EDT on Saturday, Aug. 26, from Kennedy Space Center’s Launch Complex 39A in Florida carrying NASA’s SpaceX Crew-7 crew members to the International Space Station. Aboard SpaceX’s Dragon spacecraft are NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov.

9. The Near Space Network supported 19 launches in 2023! Launches included Commercial Crew flights to the International Space Station, science mission launches like XRISM and the SuperBIT balloon, and many more. Once in orbit, these satellites use Near Space Network antennas and relays to send their critical data to Earth. In 2023, the Near Space Network provided over 10 million minutes of communications support to missions in space.

Here’s to another year connecting Earth and space.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags