Your gateway to endless inspiration
1. Small satellites is the umbrella term for describing any satellite that is the size of an economy-sized washing machine all the way down to a CubeSat, which you can hold in your hand.
2. CubeSats come in multiple sizes defined by the U, which stands for unit. Making it the Unit unit. 1U CubeSats are cubes 4 inches (10 cm) on a side, weighing as little as 4 pounds. A 3U CubeSat is three 1Us hooked together, resembling a flying loaf of bread. A 6U CubeSat is two 3Us joined at the hip, like a flying cereal box. These are the three most common configurations.
Photo courtesy of the University of Michigan
3. CubeSats were developed by researchers at California Polytechnic State University and Stanford University who wanted a standardized format to make launching them into space easier and to be small enough for students to get involved in designing, building and launching a satellite.
4. Small satellites often hitch a ride to space with another mission. If there’s room on the rocket of a larger mission, they’re in. CubeSats in particular deploy from a p-pod – poly-picosatellite orbital deployer – tucked on the underside of the upper stage of the rocket near the engine bell.
5. Small sats test technology at lower costs. Their small size and the relatively short amount of time it takes to design and build a small satellite means that if we want to test a new sensor component or a new way of making an observation from space, we can do so without being in the hole if it doesn’t work out. There’s no environment on Earth than can adequately recreate space, so sometimes the only way to know if new ideas work is to send them up and see.
6. Small sats force us to think of new ways to approach old problems. With a satellite the size of a loaf of bread, a cereal box, or a microwave oven, we don’t have a lot of room for the science instrument or power to run it. That means thinking outside the box. In addition to new and creative designs that include tape measures, customized camera lenses, and other off-the-shelf parts, we have to think of new ways of gathering all the data we need. One thing we’re trying out is flying small sat constellations – a bunch of the same kind of satellite flying in formation. Individually, each small sat sees a small slice of Earth below. Put them together and we start to see the big picture.
7. Small sats won’t replace big satellites. Size does matter when it comes to power, data storage, and how precise your satellite instrument is. Small satellites come with trade-offs that often mean coarser image resolution and shorter life-spans than their bigger sister satellites. However, small sat data can complement data collected by big satellites by covering more ground, by passing over more frequently, by flying in more dangerous orbits that big satellites avoid, and by continuing data records if there’s a malfunction or a wait between major satellite missions. Together they give us a more complete view of our changing planet.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com