Your gateway to endless inspiration
Our flying observatory SOFIA carries a telescope inside this Boeing 747SP aircraft. Scientists use SOFIA to study the universe — including stars, planets and black holes — while flying as high as 45,000 feet.
SOFIA is typically based at our Armstrong Flight Research Center in Palmdale, California, but recently arrived in Christchurch, New Zealand, to study celestial objects that are best observed from the Southern Hemisphere.
So what will we study from the land down under?
Eta Carinae, in the southern constellation Carina, is the most luminous stellar system within 10,000 light-years of Earth. It’s made of two massive stars that are shrouded in dust and gas from its previous eruptions and may one day explode as a supernova. We will analyze the dust and gas around it to learn how this violent system evolves.
We can study magnetic fields in the center of our Milky Way galaxy from New Zealand because there the galaxy is high in the sky — where we can observe it for long periods of time. We know that this area has strong magnetic fields that affect the material spiraling into the black hole here and forming new stars. But we want to learn about their shape and strength to understand how magnetic fields affect the processes in our galactic center.
Titan is Saturn’s largest moon and is the only moon in our solar system to have a thick atmosphere — it’s filled with a smog-like haze. It also has seasons, each lasting about seven Earth years. We want to learn if its atmosphere changes seasonally.
Titan will pass in front of a star in an eclipse-like event called an occultation. We’ll chase down the shadow it casts on Earth’s surface, and fly our airborne telescope directly in its center.
From there, we can determine the temperature, pressure and density of Titan’s atmosphere. Now that our Cassini Spacecraft has ended its mission, the only way we can continue to monitor its atmosphere is by studying these occultation events.
The Large Magellanic Cloud is a galaxy near our own, but it’s only visible from the Southern Hemisphere! Inside of it are areas filled with newly forming stars and the leftovers from a supernova explosion.
The Tarantula Nebula, also called 30 Doradus, is located in the Large Magellanic Cloud and shown here in this image from Chandra, Hubble and Spitzer. It holds a cluster of thousands of stars forming simultaneously. Once the stars are born, their light and winds push out the material leftover from their parent clouds — potentially leaving nothing behind to create more new stars. We want to know if the material is still expanding and forming new stars, or if the star-formation process has stopped. So our team on SOFIA will make a map showing the speed and direction of the gas in the nebula to determine what’s happening inside it.
Also in the Large Magellanic Cloud is Supernova 1987A, the closest supernova explosion witnessed in almost 400 years. We will continue studying this supernova to better understand the material expanding out from it, which may become the building blocks of future stars and planets. Many of our telescopes have studied Supernova 1987A, including the Hubble Space Telescope and the Chandra X-ray Observatory, but our instruments on SOFIA are the only tools we can use to study the debris around it with infrared light, which let us better understand characteristics of the dust that cannot be measured using other wavelengths of light.
For live updates about our New Zealand observations follow SOFIA on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.