TumbleCatch

Your gateway to endless inspiration

Aircraft - Blog Posts

3 weeks ago

boeing 737 more like boing boing off the ground 24/7


Tags
11 years ago

Some awesomeness this morning...

F-14 Tomcat Takeoff

F-14 Tomcat takeoff


Tags
5 years ago
NAS PENSACOLA, Fla. (NNS) -- The U.S. Navy Flight Demonstration Squadron, The Blue Angels, And The U.S.

NAS PENSACOLA, Fla. (NNS) -- The U.S. Navy Flight Demonstration Squadron, the Blue Angels, and the U.S. Air Force Air Demonstration Squadron, the Thunderbirds, will honor frontline COVID-19 responders and essential workers with formation flights over Baltimore, Washington D.C. and Atlanta May 2. "America Strong is a way for both teams to show appreciation to the thousands of doctors, nurses, first responders and essential workers out there serving on the frontline day-in and day-out," said Cmdr. Brian Kesselring, U.S. Navy Blue Angels commanding officer and flight leader for the flyover. "This is an extraordinary and unprecedented time but we will get through this. We are all in this together." A formation of 6 F-16C/D Fighting Falcon and 6 F/A-18C/D Hornet aircraft will conduct these flyovers as a collaborative salute to healthcare workers, first responders, military, and other essential personnel while standing in solidarity with all Americans during the COVID-19 pandemic. "We are honored to fly over these cities in a display of national unity and support for the men and women keeping our communities safe." said U.S. Air Force Lt. Col. John Caldwell, Thunderbird commander and lead pilot. "These flyovers are a gesture of goodwill on behalf of the entire Department of Defense to the heroes of the COIVD-19 pandemic." This mission, the second of several planned over the coming weeks, is the culmination of more than a month of planning and coordination between the two teams and numerous city and government offices. Residents along the flight path can expect a few moments of jet noise as the aircraft pass overhead, along with the sight of 12 high-performance aircraft flying close in precise formation. Flyovers in Baltimore will start at 11:30 a.m. (EDT) and last approximately 15 minutes. Flyovers in Washington D.C. and surrounding communities will start at 11:45 a.m. (EDT) and last approximately 20 minutes. Flyovers in Atlanta will start at 1:35 p.m. (EDT) and last approximately 25 minutes. • • #FilmedBySMC #WashingtonDC #Baltimore #Atlanta #BlueAngels #Thunderbirds #Flyover #AmericaStrong #FlightPath #Aircraft #ShootMoveCommunicate (at Washington D.C.) https://www.instagram.com/p/B_pzp4cHZxC/?igshid=vgyse6o0n0zs


Tags
1 year ago

Soaring into Aerospace: NASA Interns Take Flight at EAA AirVenture Oshkosh

Four people pose in front of a giant inflatable astronaut. Each of the four people are in polos with a NASA insignia on the upper left of their shirt. It’s sunny and clouds and a blue sky can be seen in the background. A large white tent with a NASA logo emblazoned above the entrance can also be seen in the background. Credit: NASA

Sustainable Aviation Ambassadors Alex Kehler, Bianca Legeza-Narvaez, Evan Gotchel, and Janki Patel pose in front of the NASA Pavilion at EAA AirVenture Oshkosh.

It’s that time of year again–EAA AirVenture Oshkosh is underway!

Boasting more than 650,000 visitors annually, EAA AirVenture Oshkosh, or “Oshkosh” for short, is an airshow and fly-in held by the Experimental Aircraft Association (EAA). Each year, flight enthusiasts and professionals from around the world converge on Oshkosh, Wisconsin, to engage with industry-leading organizations and businesses and celebrate past, present, and future innovation in aviation.

This year, four NASA interns with the Electrified Powertrain Flight Demonstration (EPFD) project count themselves among those 650,000+ visitors, having the unique opportunity to get firsthand experience with all things aerospace at Oshkosh.

Alex Kehler, Bianca Legeza-Narvaez, Evan Gotchel, and Janki Patel are Sustainable Aviation Ambassadors supporting the EPFD project, which conducts tests of hybrid electric aircraft that use electric aircraft propulsion technologies to enable a new generation of electric-powered aircraft. The focus of Alex, Bianca, Evan, and Janki’s internships cover everything from strategic communications to engineering, and they typically do their work using a laptop. But at Oshkosh, they have a special, more hands-on task: data collection.

“At Oshkosh, I am doing some data collection to better estimate how we can be prepared in the future,” said Janki, an Aerospace Engineering major from the University of Michigan. “Coming to Oshkosh has been an amazing experience… I can walk around and see people passionate about the work they do.”

This image shows the inside of a large tent filled with people. There are three visible stations throughout the tent, which consist of tall pillars that are adorned with color-coded decorations for the theme of the station. Along two of the stations are two interactive visual displays, where visitors sit in chairs and, through the use of a controller, navigate a virtual game featuring NASA aircraft. Credit: NASA

The NASA Pavilion at EAA AirVenture Oshkosh is full of interactive exhibits and activities for visitors to engage with. NASA Interns Alex, Bianca, Evan, and Janki are collecting data in the pavilion to help improve future exhibits at Oshkosh.

In addition to gathering data to help inform future NASA exhibits and activities at Oshkosh, the interns also have the opportunity to engage with visitors and share their passion for aviation with other aero enthusiasts. For Evan, who is receiving his Master's in Aerospace Engineering from the Georgia Institute of Technology, “being able to be here and talk with people who are both young and old who are interested in what the future of flight could be has been so incredible.”

Four people pose in front of NASA’s Super Guppy, a large, specialized aircraft that is used to transport oversize cargo. Each of the four people are wearing a polo shirt with a NASA insignia on the upper left of their shirt. The group is smiling and laughing for the photo. The Super Guppy is shiny and has silver covering the top half of the aircraft, white on the bottom half of the aircraft, and a large blue stripe running along the middle. Credit: NASA

Alex, Evan, Bianca, and Janki pose in front of NASA’s Super Guppy, a specialized aircraft used to transport oversized cargo.

At Oshkosh, one memory in particular stands out for Alex, Bianca, Evan, and Janki: seeing NASA’s famous Super Guppy in person. With a unique hinged nose and a cargo area that's 25 feet in diameter and 111 feet long, the Super Guppy can carry oversized cargo that is impossible to transport with other cargo aircraft. 

“We had a very lucky experience… We were able to not only see the Super Guppy, we got to get up close when it landed,” said Bianca, who is receiving her Master's in Business Administration with a specialization in Strategic Communications from Bowling Green State University. “From a learning experience, it gave me a way better basis on cargo aircraft and how they operate.” 

For Alex, who is receiving his Master's in Aeronautical Engineering from the Georgia Institute of Technology, it was exciting to see the Super Guppy’s older technology integrated with newer technologies up close. “There have been a lot of good memories, but I think the best one was the Super Guppy. It was cool to see this combination of 60’s and 70’s technology with this upgraded plane.”

Two people pose for a photo in a street. The person taking the photo is taking the image “selfie style,” so that their arms are visible in the frame. Both of the people are smiling. One is wearing a white polo and the other is wearing a red polo, and both shirts feature the NASA insignia. People can be seen milling about behind the two who are posing for the photo, and in the distance, small aircraft parked on grass can also be seen. Credit: NASA

Evan and Janki pose for a photo while walking around EAA AirVenture Oshkosh.

With Oshkosh coming to a close this Sunday, July 30, Alex, Bianca, Evan, and Janki also reflected on advice they have for future NASA interns on how they can get the most out of their internship: be curious and explore, connect with people who work in the field you’re interested in, and don’t be afraid to ask questions.

Alex advises potential NASA interns to “dream big and shoot for your goals, and divide that up into steps… In the end it will work out.” For Bianca, being open and exploring is key: “take opportunities, even if it’s the complete opposite thing that you were intending to do.”

Two people pose for a photo. The person taking the photo is taking the image “selfie style,” so one of their arms is visible in the photo, and they are wearing a blue polo with the NASA insignia featured on the upper left of their shirt. The person not taking the photo is holding an umbrella over them and is wearing a light blue shirt. Both of the people are smiling. In the background, there is grass, and in the distance, there are small aircraft parked on the grass. Credit: NASA

“Ask questions all the time,” said Evan. “Even outside the internship, always continue asking people about what they are knowledgeable on.” And Janki encourages future interns to “Follow your own path. Get the help of mentors, but still do your own thing.”

Visiting Oshkosh and want to see NASA science in action? Stop by the NASA Pavilion, located at Aviation Gateway Park, and see everything from interactive exhibits on sustainable aviation, Advanced Air Mobility, Quesst, and Artemis to STEM activities–and you may even meet NASA pilots, engineers, and astronauts! At Oshkosh, the sky’s the limit.

Interested in interning with NASA? Head over to NASA’s internship website to learn more about internship opportunities with NASA and find your place in (aero)space.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

A Beginner’s Guide to Advanced Air Mobility

A Beginner’s Guide To Advanced Air Mobility

Soaring over traffic in an air taxi, receiving packages faster, and participating in a sustainable, safer mode of transportation: all could be possible with a revolutionary new type of air transportation system in development called Advanced Air Mobility (AAM).

AAM could include new aircraft developed by industry, called electric vertical takeoff and landing vehicles, or eVTOLs, for use in passenger, package, or cargo delivery. It may also include new places for these aircraft to take off and land called vertiports.

Our work in Advanced Air Mobility will transform the way people and goods will move through the skies. This includes using Advanced Air Mobility for public good missions such as disaster, medical, and wildfire response.

What is Advanced Air Mobility?

Our vision for Advanced Air Mobility is to map out a safe, accessible, and affordable new air transportation system alongside industry, community partners, and the Federal Aviation Administration.

A Beginner’s Guide To Advanced Air Mobility

Once developed, passengers and cargo will travel on-demand in innovative, automated aircraft called eVTOLs, across town, between neighboring cities, or to other locations typically accessed today by car.  

What are the benefits of Advanced Air Mobility?

The addition of Advanced Air Mobility will benefit the public in several ways: easier access for travelers between rural, suburban, and urban communities; rapid package delivery; reduced commute times; disaster response, and new solutions for medical transport of passengers and supplies.

A Beginner’s Guide To Advanced Air Mobility

What are the challenges associated with Advanced Air Mobility?

Various NASA simulation and flight testing efforts will study noise, automation, safety, vertiports, airspace development and operations, infrastructure, and ride quality, along with other focus areas like community integration.

These areas all need to be further researched before Advanced Air Mobility could be integrated into our skies. We’re helping emerging aviation markets navigate the creation of this new transportation system.

When will Advanced Air Mobility take off?

We provide various test results to the FAA to help with new policy and standards creation. We aim to give industry and the FAA recommendations for requirements to build a scalable Advanced Air Mobility system to help enable the industry to flourish by 2030.

A Beginner’s Guide To Advanced Air Mobility

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

A Beginner’s Guide to Sustainable Aviation

Do you dream of catching a short flight between cities or journeying across the globe? The aviation industry currently makes up 2-3% of all carbon emissions, but the shift toward electric and hybrid aircraft will help tackle climate change and minimize the environmental impacts of commercial aviation.  

Sustainable flight will revolutionize the way we travel. From battery-powered aircraft that reduce fuel consumption, to new lightweight materials that can improve safety and efficiency during flight, here are a few important things to know about the world of sustainable aviation, and what it takes to make air travel cleaner and safer for our planet.

What is Electrified Aircraft Propulsion?

A Beginner’s Guide To Sustainable Aviation

Similar to electric or hybrid-electric cars, sustainable aircraft designs feature electric powertrain systems – the system of components that help propel an aircraft during flight – to help reduce fuel use and emissions. Electrified Aircraft Propulsion (EAP) systems let aircraft work using electric motors, and alternative fuels, rather than relying solely on traditional jet engines burning fossil fuels. At NASA, we’re developing innovative EAP technologies ranging from advanced electric machines designed to increase power and performance to new aircraft materials developed to minimize weight and reduce fuel usage.

What are the challenges with electrifying flight?

A Beginner’s Guide To Sustainable Aviation
A Beginner’s Guide To Sustainable Aviation

Unlike electric vehicles on the ground, electrified aircraft face greater challenges when managing weight and heat while they’re running. In order to ensure maximum efficiency and safety, aircraft components must be designed with minimal weight to help reduce the amount of drag slowing the plane down and causing excess fuel burn. Electrified aircraft must also have advanced thermal management systems to help transfer heat effectively, and ensure onboard systems are kept cool to avoid damage.  

Our research and development of EAP technologies offer innovative solutions to these challenges. Designed to keep weight at a minimum, aircraft components such as the High Efficiency Megawatt Motor feature advanced technology that enable increased power and efficiency with three times less heat loss and weight than traditional aircraft motors. New material technologies such as electrical insulation also help transport heat more effectively to minimize heat buildup and are made of lightweight materials to ensure efficiency at high altitudes.

What are the benefits of sustainable aviation?

A Beginner’s Guide To Sustainable Aviation

From an environmental perspective, aircraft electrification offers unique opportunities to lower global emissions and minimize reliance on fossil fuels. The introduction of hybrid- or fully electric aircraft will significantly reduce overall fuel consumption by generating power and thrust via electricity and electric motors. Lightweight EAP systems and components can also help improve aircraft efficiency and reduce fuel burn, while using non-conventional, alternative fuels can help reduce harmful emissions. From an economic standpoint, EAP technologies could help strengthen commercial airliner markets with aircraft designed for around 180 passengers. Green technologies can also benefit both airline companies and you when you fly by potentially reducing aircraft maintenance and in-flight energy costs, making air travel more affordable.   

When will sustainable flight take off?

A Beginner’s Guide To Sustainable Aviation

To help turn visions of eco-friendly air travel into reality, we’re teaming up with industry to test EAP technologies on aircraft and introduce them to the U.S. commercial aviation fleet no later than 2035.  

Under our Electrified Powertrain Flight Demonstration (EPFD) project, we will conduct ground and flight tests using existing aircraft modified with EAP systems to assist in transitioning these technologies into commercial products. Flight demonstrations will also enable us to identify key risks and barriers associated with integrating new EAP systems into commercial airliners and develop new standards for future EAP aircraft as they take to the skies within the next decade. 

There you have it: a quick glimpse into the world of sustainable aviation, and the shift towards keeping our skies cleaner and safer. As we embark on this journey, climb aboard and stay up to date on our latest technology developments and future flight demonstrations.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

Setting the Standards for Unmanned Aircraft

From advanced wing designs, through the hypersonic frontier, and onward into the era of composite structures, electronic flight controls, and energy efficient flight, our engineers and researchers have led the way in virtually every aeronautic development. And since 2011, aeronautical innovators from around the country have been working on our Unmanned Aircraft Systems integration in the National Airspace System, or UAS in the NAS, project.  

image

This project was a new type of undertaking that worked to identify, develop, and test the technologies and procedures that will make it possible for unmanned aircraft systems to have routine access to airspace occupied by human piloted aircraft. Since the start, the goal of this unified team was to provide vital research findings through simulations and flight tests to support the development and validation of detect and avoid and command and control technologies necessary for integrating UAS into the NAS.  

image

That interest moved into full-scale testing and evaluation to determine how to best integrate unmanned vehicles into the national airspace and how to come up with standards moving forward. Normally, 44,000 flights safely take off and land here in the U.S., totaling more than 16 million flights per year. With the inclusion of millions of new types of unmanned aircraft, this integration needs to be seamless in order to keep the flying public safe.

image

Working hand-in-hand, teams collaborated to better understand how these UAS's would travel in the national airspace by using NASA-developed software in combination with flight tests. Much of this work is centered squarely on technology called detect and avoid.  One of the primary safety concerns with these new systems is the inability of remote operators to see and avoid other aircraft.  Because unmanned aircraft literally do not have a pilot on board, we have developed concepts allowing safe operation within the national airspace.  

image

In order to better understand how all the systems work together, our team flew a series of tests to gather data to inform the development of minimum operational performance standards for detect and avoid alerting guidance. Over the course of this testing, we gathered an enormous amount of data allowing safe integration for unmanned aircraft into the national airspace. As unmanned aircraft are becoming more ubiquitous in our world - safety, reliability, and proven research must coexist.

image

Every day new use case scenarios and research opportunities arise based around the hard work accomplished by this incredible workforce. Only time will tell how these new technologies and innovations will shape our world.

image

Want to learn the many ways that NASA is with you when you fly? Visit nasa.gov/aeronautics.



Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Uncovering a Massive Meteor Crater Found Lurking Under the Ice

image

For the first time ever, we've found a massive crater hiding under one of Earth's ice sheets. Likely caused by a meteor, it was uncovered in Greenland by a team of international scientists using radar data.

image

The data was collected by missions like our Operation IceBridge, which flies planes over Greenland and Antarctica to study the ice and snow at our planet’s poles.

image

In this case, the crater is near Hiawatha Glacier, covered by a sheet of ice more than half a mile thick. We're pretty sure that the crater was caused by a meteor because it has characteristics traditionally associated with those kinds of impacts, like a bowl shape and central peaks.

image

It’s also one of the 25 largest impact craters in the world, large enough to hold the cities of Paris or Washington, D.C. The meteor that created it was likely half a mile wide.

image

Currently, there’s still lots to learn about the crater – and the meteor that created it – but it’s likely relatively young in geologic timescales. The meteor hit Earth within the last 3 million years, but the impact could have been as recent as 13,000 years ago.

image

While it was likely smaller than the meteor credited with knocking out the dinosaurs, this impact could have potentially caused a large influx of fresh water into the northern Atlantic Ocean, which would have had profound impacts for life in the region at the time.

image

Go here to learn more about this discovery: https://www.nasa.gov/press-release/international-team-nasa-make-unexpected-discovery-under-greenland-ice

image

Operation IceBridge continues to uncover the hidden secrets under Earth's ice. IceBridge has been flying for 10 years, providing a data bridge between ICESat, which flew from 2003 to 2009, and ICESat-2, which launched in September. IceBridge uses a suite of instruments to help track the changing height and thickness of the ice and the snow cover above it. IceBridge also measures the bedrock below the ice, which allows for discoveries like this crater.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

NASA’s 60th Anniversary: The Leading Edge of Flight

Aeronautics is our tradition. For 60 years, we have advanced aeronautics, developed new technologies and researched aerodynamics. Our advancements have transformed the way you fly. We will continue to revolutionize flight. Since we opened for business on Oct. 1, 1958, our history tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Capturing Space Stories, One Click at a Time!

It’s World Photography Day!

To celebrate the occasion, we’re sharing photos from our photographers that chronicle what's making news across the agency - from launches and landings to important science announcements to images taken from the vantage point of space.

Take a look!

A Closer View of the Moon 

image

Posted to Twitter by European Space Agency astronaut Alexander Gerst, this image shows our planet's Moon as seen from the International Space Station. As he said in the tweet, "By orbiting the Earth almost 16 times per day, the #ISS crew travel the distance to the Moon and back – every day. #Horizons"

The International Space Station is the world's only orbital laboratory. An international partnership of space agencies provides and operates the elements of the station. The principals are the space agencies of the United States, Russia, Europe, Japan and Canada.

Photo Credit: NASA

Spacewalk Selfie

image

NASA astronaut Ricky Arnold took this selfie during the May 16, 2018, spacewalk to perform upgrades on the International Space Station, saying in a tweet "An amazing view of our one and only planet."

Arnold and fellow spacewalker Drew Feustel donned spacesuits and worked for more than six hours outside the station to finish upgrading cooling system hardware and install new and updated communications equipment for future dockings of commercial crew spacecraft.

Photo Credit: NASA

Preparing to Leave Earth

Capturing Space Stories, One Click At A Time!

The mobile service tower at Space Launch Complex-3 is rolled back to reveal the United Launch Alliance Atlas-V rocket with NASA’s InSight spacecraft onboard, Friday, May 4, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. 

Photo Credit: NASA/Bill Ingalls

Launch Long Exposure

image

The United Launch Alliance Delta IV Heavy rocket is seen in this long exposure photograph as it launches NASA's Parker Solar Probe to touch the Sun, Sunday, Aug. 12, 2018 from Launch Complex 37 at Cape Canaveral Air Force Station, Florida. Parker Solar Probe is humanity’s first-ever mission into a part of the Sun’s atmosphere called the corona.  Here it will directly explore solar processes that are key to understanding and forecasting space weather events that can impact life on Earth.

Photo Credit: NASA/Bill Ingalls

Waving Farewell

image

Expedition 56 flight engineer Serena Auñón-Chancellor of NASA waves farewell to family and friends as she and Soyuz Commander Sergey Prokopyev of Roscosmos and flight engineer Alexander Gerst of European Space Agency depart Building 254 for the launch pad a few hours before their launch, Wednesday, June 6, 2018 at the Baikonur Cosmodrome in Kazakhstan. Auñón-Chancellor, Prokopyev, and Gerst launched aboard the Soyuz MS-09 spacecraft at 7:12am EDT (5:12pm Baikonur time) on June 6 to begin their journey to the International Space Station.

Photo Credit: NASA/Victor Zelentsov

Launching Humans to Space

image

The Soyuz MS-09 rocket is launched with Expedition 56 Soyuz Commander Sergey Prokopyev of Roscosmos, flight engineer Serena Auñón-Chancellor of NASA, and flight engineer Alexander Gerst of ESA (European Space Agency), Wednesday, June 6, 2018 at the Baikonur Cosmodrome in Kazakhstan. Prokopyev, Auñón-Chancellor, and Gerst will spend the next six months living and working aboard the International Space Station. 

Photo Credit: NASA/Joel Kowsky

Rethinking Aircraft Design

image

In an effort to improve fuel efficiency, NASA and the aircraft industry are rethinking aircraft design. Inside the 8’ x 6’ wind tunnel at NASA Glenn Research Center, engineers tested a fan and inlet design, commonly called a propulsor, which could use four to eight percent less fuel than today’s advanced aircraft.

Photo Credit: NASA/Rami Daud

Flying Observatory

image

SOFIA, the Stratospheric Observatory for Infrared Astronomy, is the largest airborne observatory in the world, capable of making observations that are impossible for even the largest and highest ground-based telescopes. During its lifetime, SOFIA also will inspire the development of new scientific instrumentation and foster the education of young scientists and engineers.

Photo Credit: NASA/SOFIA/Waynne Williams

Experimenting with Venus-like conditions

image

A close-up view of crystals that developed on materials exposed to conditions on Venus in NASA Glenn’s Extreme Environments Rig. This unique and world class ground-based test rig can accurately most simulate atmospheric conditions for any planet or moon in the solar system and beyond.

Photo Credit: NASA/Bridget Caswell

Honeycomb Close Up

image

A close-up view of 3-D printed honeycomb patterns made in NASA Glenn manufacturing lab using a method called binder jetting. The honeycomb structures can find use in several applications such as a strong core for lightweight sandwich panels, acoustic panels for noise attenuation and innovative cellular structures.

Photo Credit: NASA/Marvin Smith

To see even more photos of our space exploration efforts, visit us on Flickr: https://www.flickr.com/photos/nasahqphoto/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Five Technologies Taking Aeronautics into the Future

Martian helicopters? Electric planes? Quiet supersonic flight?

The flight technologies of tomorrow are today’s reality at NASA. We’re developing a number of innovations that promise to change the landscape (skyscape?) of aviation. Here are five incredible aeronautic technologies currently in development:

image

 1. The X-59 QueSST and Quiet Supersonic Technology

It might sound like an oxymoron, but ‘quiet boom’ technology is all the rage with our Aeronautics Mission Directorate. The X-59 QueSST is an experimental supersonic jet that hopes to reduce the sound of a supersonic boom to a gentle thump. We will gauge public reaction to this ‘sonic thump,’ evaluating its potential impact if brought into wider use. Ultimately, if the commercial sector incorporates this technology, the return of supersonic passenger flight may become a reality!

image

 2. The X-57 Electric Plane

Electric cars? Pfft. We’re working on an electric PLANE. Modified from an existing general aviation aircraft, the X-57 will be an all-electric X-plane, demonstrating a leap-forward in green aviation. The plane seeks to reach a goal of zero carbon emissions in flight, running on batteries fed by renewable energy sources!

image

3. Second-Generation Search and Rescue Beacons

Our Search and Rescue office develops technologies for distress beacons and the space systems that locate them. Their new constellation of medium-Earth orbit instruments can detect a distress call near-instantaneously, and their second-generation beacons, hitting shelves soon, are an order of magnitude more accurate than the previous generation!

(The Search and Rescue office also recently debuted a coloring book that doesn’t save lives but will keep your crayon game strong.)

image

4. Earth from the Air

Earth science? We got it.

We don’t just use satellite technology to monitor our changing planet. We have a number of missions that monitor Earth’s systems from land, sea and air. In the sky, we use flying laboratories to assess things like air pollution, greenhouse gasses, smoke from wildfires and so much more. Our planet may be changing, but we have you covered.

image

5. Icing Research

No. Not that icing.

image

Much better.

Though we at NASA are big fans of cake frosting, that’s not the icing we’re researching. Ice that forms on a plane mid-flight can disrupt the airflow around the plane and inside the engine, increasing drag, reducing lift and even causing loss of power. Ice can also harm a number of other things important to a safe flight. We’re developing tools and methods for evaluating and simulating the growth of ice on aircraft. This will help aid in designing future aircraft that are more resilient to icing, making aviation safer.

There you have it, five technologies taking aeronautics into the future, safely down to the ground and even to other planets! To stay up to date on the latest and greatest in science and technology, check out our website: www.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Ten Observations From Our Flying Telescope

image

SOFIA is a Boeing 747SP aircraft with a 100-inch telescope used to study the solar system and beyond by observing infrared light that can’t reach Earth’s surface.

image

What is infrared light? It’s light we cannot see with our eyes that is just beyond the red portion of visible light we see in a rainbow. It can be used to change your TV channels, which is how remote controls work, and it can tell us how hot things are.

image

Everything emits infrared radiation, even really cold objects like ice and newly forming stars! We use infrared light to study the life cycle of stars, the area around black holes, and to analyze the chemical fingerprints of complex molecules in space and in the atmospheres of other planets – including Pluto and Mars.

image

Above, is the highest-resolution image of the ring of dust and clouds around the back hole at the center of our Milky Way Galaxy. The bright Y-shaped feature is believed to be material falling from the ring into the black hole – which is located where the arms of the Y intersect.

image

The magnetic field in the galaxy M82 (pictured above) aligns with the dramatic flow of material driven by a burst of star formation. This is helping us learn how star formation shapes magnetic fields of an entire galaxy.

image

A nearby planetary system around the star Epsilon Eridani, the location of the fictional Babylon 5 space station, is similar to our own: it’s the closest known planetary system around a star like our sun and it also has an asteroid belt adjacent to the orbit of its largest, Jupiter-sized planet.

image

Observations of a supernova that exploded 10,000 years ago, that revealed it contains enough dust to make 7,000 Earth-sized planets!

image

Measurements of Pluto’s upper atmosphere, made just two weeks before our New Horizons spacecraft’s Pluto flyby. Combining these observations with those from the spacecraft are helping us understand the dwarf planet’s atmosphere.

image

A gluttonous star that has eaten the equivalent of 18 Jupiters in the last 80 years, which may change the theory of how stars and planets form.

image

Molecules like those in your burnt breakfast toast may offer clues to the building blocks of life. Scientists hypothesize that the growth of complex organic molecules like these is one of the steps leading to the emergence of life.

image

This map of carbon molecules in Orion’s Horsehead nebula (overlaid on an image of the nebula from the Palomar Sky Survey) is helping us understand how the earliest generations of stars formed. Our instruments on SOFIA use 14 detectors simultaneously, letting us make this map faster than ever before!

image

Pinpointing the location of water vapor in a newly forming star with groundbreaking precision. This is expanding our understanding of the distribution of water in the universe and its eventual incorporation into planets. The water vapor data from SOFIA is shown above laid over an image from the Gemini Observatory.

image

We captured the chemical fingerprints that revealed celestial clouds collapsing to form young stars like our sun. It’s very rare to directly observe this collapse in motion because it happens so quickly. One of the places where the collapse was observed is shown in this image from The Two Micron All Sky Survey.

Learn more by following SOFIA on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

What's Inside SOFIA? High Flying Instruments

image

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Having an airborne observatory provides many benefits.

image

It flies at 38,000-45,000 feet – above 99% of the water vapor in Earth’s atmosphere that blocks infrared light from reaching the ground! 

image

It is also mobile! We can fly to the best vantage point for viewing the cosmos. We go to Christchurch, New Zealand, nearly every year to study objects best observed from the Southern Hemisphere. And last year we went to Daytona Beach, FL, to study the atmosphere of Neptune’s moon Triton while flying over the Atlantic Ocean.

image

SOFIA’s telescope has a large primary mirror – about the same size as the Hubble Space Telescope’s mirror. Large telescopes let us gather a lot of light to make high-resolution images!

image

But unlike a space-based observatory, SOFIA returns to our base every morning.

image

Which means that we can change the instruments we use to analyze the light from the telescope to make many different types of scientific observations. We currently have seven instruments, and new ones are now being developed to incorporate new technologies.

So what is inside SOFIA? The existing instruments include:

image

Infrared cameras that can peer inside celestial clouds of dust and gas to see stars forming inside. They can also study molecules in a nebula that may offer clues to the building blocks of life…

image

…A polarimeter, a device that measures the alignment of incoming light waves, that we use to study magnetic fields. The left image reveals that hot dust in the starburst galaxy M82 is magnetically aligned with the gas flowing out of it, shown in blue on the right image from our Chandra X-ray Observatory. This can help us understand how magnetic fields affect how stars form.

image

…A tracking camera that we used to study New Horizon’s post-Pluto flyby target and found that it may have its own moon…

image

…A spectrograph that spreads light into its component colors. We’re using one to search for signs of water plumes on Jupiter’s icy moon Europa and to search for signs of water on Venus to learn about how it lost its oceans…

image

…An instrument that studies high energy terahertz radiation with 14 detectors. It’s so efficient that we made this map of Orion’s Horsehead Nebula in only four hours! The map is made of 100 separate views of the nebula, each mapping carbon atoms at different velocities.

image

…And we have an instrument under construction that will soon let us study how water vapor, ice and oxygen combine at different times during planet formation, to better understand how these elements combine with dust to form a mass that can become a planet.

image

Our airborne telescope has already revealed so much about the universe around us! Now we’re looking for the next idea to help us use SOFIA in even more new ways. 

Discover more about our SOFIA flying observatory HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

The California Wildfires from Above

As massive wildfires continue to rage in southern California, our satellites, people in space and aircraft are keeping an eye on the blazes from above. 

This data and imagery not only gives us a better view of the activity, but also helps first responders plan their course of action. 

image

A prolonged spell of dry weather primed the area for major fires. The largest of the blazes – the fast-moving Thomas fire in Ventura County – charred more than 65,000 acres.

image

Powerful Santa Ana winds fanned the flames and forecasters with the LA office of the National Weather Service warned that the region is in the midst of its strongest and longest Santa Ana wind event of the year. 

These winds are hot, dry and ferocious. They can whip a small brush fire into a raging inferno in just hours.

image

Our Aqua satellite captured the above natural-color image on Dec. 5. Actively burning areas are outlined in red. Each hot spot is an area where the thermal detectors on the satellite recognized temperatures higher than the background.

image

On the same day, the European Space Agency’s Sentinel-2 satellite captured the data for the above false-color image of the burn scar. This image uses observations of visible, shortwave infrared and near infrared light.

image

From the vantage point of space, our satellites and astronauts are able to see a more comprehensive view of the activity happening on the ground. 

image

The crew living and working 250 miles above Earth on the International Space Station passed over the fires on Dec. 6. The above view was taken by astronaut Randy Bresnik as the station passed over southern California.

image

During an engineering flight test of our Cloud-Aerosol Multi-Angle Lidar (CAMAL) instrument, a view from our ER-2 high-altitude research aircraft shows smoke plumes. From this vantage point at roughly 65,000 feet, the Thomas Fire was seen as it burned on Dec. 5.

image

Our satellites can even gather data and imagery of these wildfires at night. The above image on the right shows a nighttime view of the fires on Dec. 5. 

For comparison, the image on the left shows what this region looked like the day before. Both images were taken by the Suomi NPP satellite, which saw the fires by using a special “day-night band” to detect light in a range of wavelengths from green to near-infrared and uses light intensification to detect dim signals.

image

Having the capability to see natural disasters, like these wildfires in southern California, provides first responders with valuable information that helps guide their action in the field.

For more wildfire updates, visit: nasa.gov/fires.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
7 years ago

13 Reasons to Have an Out-of-This-World Friday (the 13th)

1. Not all of humanity is bound to the ground

image

Since 2000, the International Space Station has been continuously occupied by humans. There, crew members live and work while conducting important research that benefits life on Earth and will even help us eventually travel to deep space destinations, like Mars.

2. We’re working to develop quieter supersonic aircraft that would allow you to travel from New York to Los Angeles in 2 hours

image

We are working hard to make flight greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently. Seventy years after Chuck Yeager broke the sound barrier in the Bell X-1 aircraft, we’re continuing that supersonic X-plane legacy by working to create a quieter supersonic jet with an aim toward passenger flight.

3. The spacecraft, rockets and systems developed to send astronauts to low-Earth orbit as part of our Commercial Crew Program is also helping us get to Mars

Changes to the human body during long-duration spaceflight are significant challenges to solve ahead of a mission to Mars and back. The space station allows us to perform long duration missions without leaving Earth’s orbit.

image

Although they are orbiting Earth, space station astronauts spend months at a time in near-zero gravity, which allows scientists to study several physiological changes and test potential solutions. The more time they spend in space, the more helpful the station crew members can be to those on Earth assembling the plans to go to Mars.

4. We’re launching a spacecraft in 2018 that will go “touch the Sun”

image

In the summer of 2018, we’re launching Parker Solar Probe, a spacecraft that will get closer to the Sun than any other in human history. Parker Solar Probe will fly directly through the Sun’s atmosphere, called the corona. Getting better measurements of this region is key to understanding our Sun. 

For instance, the Sun releases a constant outflow of solar material, called the solar wind. We think the corona is where this solar wind is accelerated out into the solar system, and Parker Solar Probe’s measurements should help us pinpoint how that happens.  

5. You can digitally fly along with spacecraft…that are actually in space…in real-time!

image

NASA’s Eyes are immersive, 3D simulations of real events, spacecraft locations and trajectories. Through this interactive app, you can experience Earth and our solar system, the universe and the spacecraft exploring them. Want to watch as our Juno spacecraft makes its next orbit around Juno? You can! Or relive all of the Voyager mission highlights in real-time? You can do that too! Download the free app HERE to start exploring.

6. When you feel far away from home, you can think of the New Horizons spacecraft as it heads toward the Kuiper Belt, and the Voyager spacecraft are beyond the influence of our sun…billions of miles away

image

Our New Horizons spacecraft completed its Pluto flyby in July 2015 and has continued on its way toward the Kuiper Belt. The spacecraft continues to send back important data as it travels toward deeper space at more than 32,000 miles per hour, and is ~3.2 billion miles from Earth.

image

In addition to New Horizons, our twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-37-year journey since their 1977 launches, they are each much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between the stars, filled with material ejected by the death of nearby stars millions of years ago.

7. There are humans brave enough to not only travel in space, but venture outside space station to perform important repairs and updates during spacewalks

image

Just this month (October 2017) we’ve already had two spacewalks on the International Space Station...with another scheduled on Oct. 20. 

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. These activities can also be referred to as EVAs – Extravehicular Activities. Not only do spacewalks require an enormous amount of work to prepare for, but they are physically demanding on the astronauts. They are working in the vacuum of space in only their spacewalking suit. 

8. Smart people are up all night working in control rooms all over NASA to ensure that data keeps flowing from our satellites and spacecraft

image

Our satellites and spacecraft help scientists study Earth and space. Missions looking toward Earth provide information about clouds, oceans, land and ice. They also measure gases in the atmosphere, such as ozone and carbon dioxide and the amount of energy that Earth absorbs and emits. And satellites monitor wildfires, volcanoes and their smoke.

9. A lot of NASA-developed tech has been transferred for use to the public

Our Technology Transfer Program highlights technologies that were originally designed for our mission needs, but have since been introduced to the public market. HERE are a few spinoff technologies that you might not know about.

10. We have a spacecraft currently traveling  to an asteroid to collect a sample and bring it back to Earth

image

OSIRIS-REx is our first-ever mission that will travel to an asteroid and bring a sample of it back to Earth. Currently, the spacecraft is on its way to asteroid Bennu where it will survey and map the object before it “high-fives” the asteroid with its robotic arm to collect a sample, which it will send to Earth.

If everything goes according to plan, on Sept. 24, 2023, the capsule containing the asteroid sample will make a soft landing in the Utah desert.

11. There are Earth-sized planets outside our solar system that may be habitable

To date, we have confirmed 3,000+ exoplanets, which are planets outside our solar system that orbit a Sun-like star. Of these 3,000, some are in the habitable zone – where the temperature is just right for liquid water to exist on the surface.  

image

Recently, our Spitzer Space Telescope revealed the first known system of SEVEN Earth-size planets around a single star. Three of these plants are firmly in the habitable zone, and could have liquid water on the surface, which is key to life as we know it.

12. Earth looks like art from space

image

In 1960, the United States put its first Earth-observing environmental satellite into orbit around the planet. Over the decades, these satellites have provided invaluable information, and the vantage point of space has provided new perspectives on Earth.

image

The beauty of Earth is clear, and the artistry ranges from the surreal to the sublime.

13. We’re building a telescope that will be able to see the first stars ever formed in the universe

image

Wouldn’t it be neat to see a period of the universe’s history that we’ve never seen before? That’s exactly what the James Webb Space Telescope (JWST) will be able to do…plus more!

Specifically, Webb will see the first objects that formed as the universe cooled down after the Big Bang. We don’t know exactly when the universe made the first stars and galaxies – or how for that matter. That is what we are building Webb to help answer.

Happy Friday the 13th! We hope it’s out-of-this-world!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Book Lovers Day - Free Aeronautics e-Books from NASA

image

Quieting the Boom

image

The Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight.

Download it HERE

Elegance in Flight

image

A comprehensive History of the F-16XL Experimental Prototype and its Role in our Flight Research. 

Download it HERE

Probing the Sky

image

Selected National Advisory Committee for Aeronautics (NACA) Research Airplanes and Their Contributions to Flight.

Download it HERE

Cave of the Winds

image

The huge Langley Full-Scale Tunnel building dominated the skyline of Langley Air Force Base for 81 years (1930–2011). Explore how the results of critical tests conducted within its massive test section contributed to many of the Nation's most important aeronautics and space programs.

Download it HERE

A New Twist in Flight Research

image

A New Twist in Flight Research describes the origins and design development of aeroelastic wing technology, its application to research aircraft, the flight-test program, and follow-on research and future applications.

Download it HERE

Sweeping Forward

image

Developing & Flight Testing the Grumman X-29A Forward Swept Wing Research Aircraft.

Download it HERE

Thinking Obliquely

image

Robert T. Jones, the Oblique Wing, our AD-1 Demonstrator, and its Legacy.

Download it HERE

The Apollo of Aeronautics

image

The fuel crisis of the 1970s threatened not only the airline industry but also the future of American prosperity itself. It also served as the genesis of technological ingenuity and innovation from a group of scientists and engineers at NASA, who initiated planning exercises to explore new fuel-saving technologies.

Download it HERE

X-15: Extending the Frontiers of Flight

image

X-15: Extending the Frontiers of Flight describes the genesis of the program, the design and construction of the aircraft, years of research flights and the experiments that flew aboard them.

Download it HERE

Ikhana

image

Delve into the story of the Ikhana, a remotely piloted vehicle used by NASA researchers to conduct Earth science research, which became an unexpected flying and imaging helper to emergency workers battling California wildfires.

Download it HERE

NASA's Contributions to Aeronautics, Volume 1

image

This first volume in a two-volume set includes case studies and essays on NACA-NASA research for contributions such as high-speed wing design, the area rule, rotary-wing aerodynamics research, sonic boom mitigation, hypersonic design, computational fluid dynamics, electronic flight control and environmentally friendly aircraft technology.

Download it HERE

NASA's Contributions to Aeronautics, Volume 2

image

Continue your journey into the world  of NASA's Contributions to Aeronautics with case studies and essays on NACA-NASA research for contributions including wind shear and lightning research, flight operations, human factors, wind tunnels, composite structures, general aviation aircraft safety, supersonic cruise aircraft research and atmospheric icing.

Download it HERE

Interested in other free e-books on topics from space, science, research and more? Discover the other e-books HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
As The Sun Rises, Our Global Hawk Is Prepped For Flight At Armstrong Flight Research Center On Edwards

As the sun rises, our Global Hawk is prepped for flight at Armstrong Flight Research Center on Edwards Air Force Base in California. Pre-dawn flights of our Global Hawk help beat hot summer days in Southern California. Electronic components, which are cooled by fuel onboard, only function within temperature limitations, so testing usually ceases by midday, as fuel and onboard computers become too hot to operate. The Global Hawk unmanned aircraft is used for high-altitude, long-duration Earth science missions. The ability of the Global Hawk to autonomously fly long distances, remain aloft for extended periods of time and carry large payloads brings a new capability to the science community for measuring, monitoring and observing remote locations of Earth not feasible or practical with piloted aircraft, most other robotic or remotely operated aircraft, or space satellites. 

For more information, visit HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Flying With Fuel From Plants: The Eco-friendly Way to Go

We eat them. We make medicines out of them. Now we’re learning how to use plants as airplane fuel that helps the environment.

Using biofuels to help power jet engines reduces particle emissions in their exhaust by as much as 50 to 70 percent, according to a new study that bodes well for airline economics and Earth’s atmosphere.

image

All of the aircraft, researchers and flight operations people who made ACCESS II happen. Credits: NASA/Tom Tschida

The findings are the result of a cooperative international research program led by NASA and involving agencies from Germany and Canada, and are detailed in a study published in the journal Nature.

image

The view from inside NASA's HU-25C Guardian sampling aircraft from very close behind the DC-8. Credits: NASA/SSAI Edward Winstead

Our flight tests collected information about the effects of alternative fuels on engine performance, emissions and aircraft-generated contrails – essentially, human-made clouds - at altitudes flown by commercial airliners. 

image

The DC-8's four engines burned either JP-8 jet fuel or a 50-50 blend of JP-8 and renewable alternative fuel of hydro processed esters and fatty acids produced from camelina plant oil. Credits: NASA/SSAI Edward Winstead

Contrails are produced by hot aircraft engine exhaust mixing with the cold air that is typical at cruise altitudes several miles above Earth's surface, and are composed primarily of water in the form of ice crystals.

image

Matt Berry (left), a flight operations engineer at our Armstrong Flight Research Center, reviews the flight plan with Principal Investigator Bruce Anderson. Credits: NASA/Tom Tschida

Researchers are interested in contrails because they create clouds that would not normally form in the atmosphere, and are believed to influence Earth’s environment. 

The alternative fuels tested reduced those emissions. That’s important because contrails have a larger impact on Earth’s atmosphere than all the aviation-related carbon dioxide emissions since the first powered flight by the Wright Brothers.

image

This photo, taken May 14, 2014, is from the CT-133 aircraft of research partner National Research Council of Canada. It shows the NASA HU-25C Guardian aircraft flying 250 meters behind NASA's DC-8 aircraft before it descends into the DC-8's exhaust plumes to sample ice particles and engine emissions. Credit: National Research Council of Canada

Researchers plan on continuing these studies to understand the benefits of replacing current fuels in aircraft with biofuels. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Soaring Through The Skies! This View Looks From The Window Of Our F-18 Support Aircraft During A 2016

Soaring through the skies! This view looks from the window of our F-18 support aircraft during a 2016 Orbital ATK air-launch of its Pegasus rocket. 

The CYGNSS mission, led by the University of Michigan, will use eight micro-satellite observatories to measure wind speeds over Earth’s oceans, increasing the ability of scientists to understand and predict hurricanes. 

CYGNSS launched at 8:37 a.m. EST on Thursday, Dec. 15, 2016 from our Kennedy Space Center in Florida. CYGNSS launched aboard an Orbital ATK Pegasus XL rocket, deployed from Orbital’s “Stargazer” L-1011 carrier aircraft.

Pegasus is a winged, three-stage solid propellant rocket that can launch a satellite into low Earth orbit. How does it work? Great question!

After takeoff, the aircraft (which looks like a commercial airplane..but with some special quirks) flies to about 39,000 feet over the ocean and releases the rocket. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Why Do We Study Ice?

Discover why we study ice and how this research benefits Earth. 

image

We fly our DC-8 aircraft very low over Antarctica as part of Operation IceBridge – a mission that’s conducting the largest-ever airborne survey of Earth’s polar ice.

image

Records show that 2015 was the warmest year on record, and this heat affects the Arctic and Antarctica – areas that serve as a kind of air conditioner for Earth and hold an enormous of water.

image

IceBridge flies over both Greenland and Antarctica to measure how the ice in these areas is changing, in part because of rising average global temperatures.

IceBridge’s data has shown that most of Antarctica’s ice loss is occurring in the western region. All that melting ice flows into the ocean, contributing to sea level rise.

image

IceBridge has been flying the same routes since the mission began in 2009. Data from the flights help scientists better measure year-to-year changes.

image

IceBridge carries the most sophisticated snow and ice instruments ever flown.  Its main instrument is called the Airborne Topographic Mapper, or ATM.The ATM laser measure changes in the height of the ice surface by measuring the time it takes for laser light to bounce off the ice and return to the plane – ultimately mapping ice in great detail, like in this image of Antarctica's Crane Glacier.

Why Do We Study Ice?

For the sake of the laser, IceBridge planes have to fly very low over the surface of snow and ice, sometimes as low as 1,000 feet above the ground. For comparison, commercial flights usually stay around 30,000 feet! Two pilots and a flight enginner manage the many details involved in each 10- to 12-hour flight.

image

One of the scientific radars that fly aboard IceBridge helped the British Antarctic Survey create this view of what Antarctica would look like without any ice.

image

IceBridge also studies gravity using a very sensitive instrument that can measure minuscule gravitational changes, allowing scientists to map the ocean cavities underneath the ice edges of Antarctica. This data is essential for understanding how the ice and the ocean interact. The instrument’s detectors are very sensitive to cold, so we bundle it up to keep it warm!

image

Though the ice sheet of Antarctica is two miles thick in places, the ice still “flows” – faster in some places and slower in others. IceBridge data helps us track how much glaciers change from year-to-year.

image

Why do we call this mission IceBridge? It is bridging the gap between our Ice, Cloud and Land Elevation Satellite, or ICESat – which gathered data from 2003 to 2009 – and ICESat-2, which will launch in 2018.

Why Do We Study Ice?

Learn more about our IceBridge mission here: www.nasa.gov/icebridge and about all of our ice missions on Twitter at @NASA_Ice.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Our Flying Observatory Goes to New Zealand!

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including Pluto’s atmosphere), the area around black holes and complex molecules in space. 

Heading South

image

Once each year our flying observatory, SOFIA, its team and instruments travel to the Southern Hemisphere to Christchurch, New Zealand. From there the team studies stars and other objects that cannot be seen while flying in the Northern Hemisphere.

What We Study

image

We often study star formation in our Milky Way Galaxy. But from the Southern Hemisphere we can also study the lifecycle of stars in two other galaxies called the Magellanic Clouds. The Magallenic Clouds have different materials in them, which changes how stars form in these galaxies. Scientists are studying these differences to better understand how the first stars in our universe formed.  

Home Away from Home

image

The observatory and its team use the National Science Foundation’s U.S. Antarctic Program facility at Christchurch International Airport. The Antarctic program’s off-season is June and July, so it’s an ideal time for us to use these facilities.

Another Blast of Winter

image

The Southern Hemisphere’s seasons are opposite from our own. When we are operating from Christchurch in June and July, it’s winter. This means that the nights are very long – ideal for our nighttime observing flights, which last approximately 10 hours.

Light Show

image

These observations often bring us so far south that the team onboard can see the Southern Lights, also called the Aurora Australis. This is the Southern Hemisphere equivalent of the Northern Lights, or Aurora Borealis, visible near the North Pole. Auroras are caused by particles from space hitting the atmosphere near Earth’s magnetic poles. Our scientists onboard SOFIA don’t study the aurora, but they do enjoy the view.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

We’re With You When You Fly

image

Did you know that "We’re With You When You Fly”? Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport millions of passengers and billions of dollars worth of freight to their destinations. In fact, every U.S. Aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Here are some of our objectives in aeronautics:

Making Flight Greener

image

From reducing fuel emissions to making more efficient flight routes, we’re working to make flight greener. We are dedicated to improving the design of airplanes so they are more Earth friendly by using less fuel, generating less pollution and reducing noise levels far below where they are today.

Getting you safely home faster

image

We work with the Federal Aviation Administration to provide air traffic controllers with new tools for safely managing the expected growth in air traffic across the nation. For example, testing continues on a tool that controllers and pilots can use to find a more efficient way around bad weather, saving thousands of pounds of fuel and an average of 27 minutes flying time per tested flight. These and other NASA-developed tools help get you home faster and support a safe, efficient airspace.

Seeing Aviation’s Future

image

Here at NASA, we’re committed to transforming aviation through cutting edge research and development. From potential airplanes that could be the first to fly on Mars, to testing a concept of a battery-powered plane, we’re always thinking of what the future of aviation will look like.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags