Your gateway to endless inspiration
Next week, we’re launching a new “green” fuel to space for the first time! The Green Propellant Infusion Mission (GPIM)—which consists of a non-toxic liquid, compatible propulsion system and the small satellite it’s riding on—will demonstrate how our technology works so that future missions can take advantage of this safer, more efficient fuel alternative.
Here are six key facts to know about our Green Propellant Infusion Mission:
The AFRL’s hydroxyl ammonium nitrate fuel/oxidizer blend—called AF-M315E—is actually peach in color. This liquid doesn’t require the kind of strict, handling protocols that conventional chemicals currently require. Think shirtsleeves instead of hazmat suits, which could reduce pre-launch ground processing time for a spacecraft from weeks to days!
Image Credit: Air Force Research Lab
The non-toxic fuel offers nearly 50% better performance when compared to today’s highly toxic chemical propellant, hydrazine. That’s equivalent to getting 50% more miles per gallon on your car. This means spacecraft can travel farther or operate for longer with less propellant in their fuel tanks.
Even on missions to extremely cold environments, such as the south pole of Mars – where temperatures can dip as low as -225 degrees Fahrenheit and carbon-dioxide ice “spiders” can form (see below) – AF-M315E won’t freeze, but rather just transforms into a glass transition phase. This means even though it turns into a solid, it won’t cause spacecraft components to stretch or expand, so the spacecraft only has to warm up the fuel when it needs it.
Our commercial partners report that there is a lot of interest and potential for this tech. After we successfully prove how it works in space, small satellites to large spacecraft could benefit by using the green propellant system. It’d only be a matter of time before companies begin building the new systems for market.
Engineers at Aerojet Rocketdyne in Redmond, Washington developed new, optimized hardware like thrusters, tanks, filters and valves to work with the green fuel. GPIM uses a set of thrusters that fire in different scenarios to test engine performance and reliability.
Ball Aerospace of Boulder, Colorado designed and built the mini fridge-sized spacecraft bus and pieced it all together.
Before being ready for flight, GPIM components went through rigorous testing at multiple NASA centers including our Glenn Research Center, Goddard Space Flight Center and Kennedy Space Center. The program team at Marshall Space Flight Center manages the mission. Once in orbit, researchers will work together to study how the fuel is performing as they manipulate the spacecraft. The demonstration mission will last about 13 months.
SpaceX’s Falcon Heavy rocket will launch for a third time for the U.S. Department of Defense’s Space Test Program-2 (STP-2) mission targeted for June 24, 2019 at 11:30 p.m. EDT. With nearly two dozen other satellites from government, military and research institutions, GPIM will deploy within a few hours after launch from NASA’s Kennedy Space Center in Florida. The SpaceX Falcon Heavy launch will be live-streamed here: https://www.nasa.gov/live
Follow @NASA_Technology on Twitter for news about GPIM’s launch.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Later this month, a SpaceX Falcon Heavy rocket will take to the skies for the third time to launch the Department of Defense’s Space Test Program-2 (STP-2) mission. Several exciting, one-of-a-kind NASA technology and science payloads are among the two-dozen spacecraft aboard.
First, let’s talk about that Falcon Heavy rocket. Its 27 engines generate thrust at liftoff equal to that of approximately 18 airplanes, and it can lift over 140,000 pounds.
Managed by the U.S. Air Force Space and Missile Systems Center, STP-2 is the first government-contracted Falcon Heavy launch. It will reuse the two side boosters recovered after the April flight. SpaceX describes it as one of the most challenging launches in the company’s history.
It’s a big deal to us at NASA because we’re launching some pretty cool technologies. The tech will support our future exploration plans by helping improve future spacecraft design and performance. Here’s a bit about each:
Time is the heartbeat of space navigation. Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.
Our Jet Propulsion Laboratory has been perfecting an atomic clock fit for exploration missions. The Deep Space Atomic Clock is the first atomic clock designed to fly on a spacecraft destined for beyond Earth's orbit. The timepiece is lighter and smaller—no larger than a toaster oven—than its refrigerator-sized, Earthly counterparts.
This miniaturized clock could enable one-way navigation: a spacecraft receives a signal from Earth and can determine its location immediately using its own, built-in navigation system. Even smaller versions of the clock are being investigated right now that could be used for the growing number of small to mid-size satellites. As we go forward to the Moon with the Artemis program, precise measurements of time are key to mission success.
The Deep Space Atomic Clock is the primary payload onboard the General Atomics Electromagnetic Systems Orbital Test Bed satellite and will perform a year-long demonstration in space.
Two tiny satellites will study how signals can be muddled as they travel through hard-to-predict bubbles in the upper atmosphere. Signals sent from satellites down to Earth (and vice versa) can be disrupted by structured bubbles that sometimes form in Earth's upper atmosphere. Because this region is affected both by weather on Earth and conditions in space, it's hard to predict just when these bubbles will form or how they'll mess with signals.
The E-TBEx CubeSats (short for Enhanced Tandem Beacon Experiment) will try to shed some light on that question. As these little satellites fly around Earth, they'll send radio signals (like the ones used by GPS) to receiving stations on the ground. Scientists will be able to look at the signals received and see if they were jumbled as they traveled through the upper atmosphere down to Earth — which will help us track when these bubbles are forming and how much they're interfering with our signals.
For decades, we have relied on a highly toxic spacecraft fuel called hydrazine. The Green Propellant Infusion Mission (GPIM) will lay the foundation to replace conventional chemical propulsion systems with a safer and more efficient alternative for next-generation spacecraft.
GPIM will demonstrate a new propellant in space for the first time. Concocted by the U.S. Air Force Research Laboratory, this innovative, “green” fuel—which actually has more of a peach hue—is expected to improve overall spacecraft performance due to its higher density, increased thrust and lower freezing point in comparison with hydrazine.
GPIM’s propulsion system, developed by Aerojet Rocketdyne, consists of new compatible tanks, valves and thrusters. During the two-month-long demonstration on a Ball Aerospace spacecraft, engineers will conduct orbital maneuvers to demonstrate the performance of the propellant and propulsion system.
It’s not easy being a spacecraft; invisible, energetic particles zip throughout space — and while there are so few that space is considered a vacuum, what’s there still packs a punch. Tiny particles — like those seen here impacting a detector on a Sun-studying spacecraft — can wreak havoc with the electronics we send up into space.
Space Environment Testbeds — or SET, for short — is a mission to study space radiation and how it affects spacecraft and electronics in orbit. What looks like snow flurries in these animated images, for example, is actually a solar radiation storm of incredibly fast particles, unleashed by a solar eruption. Energetic particles from the Sun or deep space can spark memory damage or computer upsets on spacecraft, and over time, degrade hardware.
By studying radiation effects and different methods to protect satellites, SET will help future missions improve spacecraft design, engineering and operations.
Follow @NASA_Technology and @NASASun on Twitter for news about the STP-2 launch and our missions aboard.
Check out www.nasa.gov/spacex to stay up-to-date on the launch day and time. Don’t forget to tune into our launch coverage, scheduled to start about 30 minutes before liftoff!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.