TumbleCatch

Your gateway to endless inspiration

Journeytomars - Blog Posts

7 years ago

The Past, Present and Future of Exploration on Mars

Today, we’re celebrating the Red Planet! Since our first close-up picture of Mars in 1965, spacecraft voyages to the Red Planet have revealed a world strangely familiar, yet different enough to challenge our perceptions of what makes a planet work.

image

You’d think Mars would be easier to understand. Like Earth, Mars has polar ice caps and clouds in its atmosphere, seasonal weather patterns, volcanoes, canyons and other recognizable features. However, conditions on Mars vary wildly from what we know on our own planet.

Join us as we highlight some of the exploration on Mars from the past, present and future:

PAST

Viking Landers

image

Our Viking Project found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet’s surface.

image

Besides taking photographs and collecting other science data, the two landers conducted three biology experiments designed to look for possible signs of life.

Pathfinder Rover

image

In 1997, Pathfinder was the first-ever robotic rover to land on the surface of Mars. It was designed as a technology demonstration of a new way to deliver an instrumented lander to the surface of a planet. Mars Pathfinder used an innovative method of directly entering the Martian atmosphere, assisted by a parachute to slow its descent and a giant system of airbags to cushion the impact.

image

Pathfinder not only accomplished its goal but also returned an unprecedented amount of data and outlived its primary design life.

PRESENT

Spirit and Opportunity

image

In January 2004, two robotic geologists named Spirit and Opportunity landed on opposite sides of the Red Planet. With far greater mobility than the 1997 Mars Pathfinder rover, these robotic explorers have trekked for miles across the Martian surface, conducting field geology and making atmospheric observations. Carrying identical, sophisticated sets of science instruments, both rovers have found evidence of ancient Martian environments where intermittently wet and habitable conditions existed.

image

Both missions exceeded their planned 90-day mission lifetimes by many years. Spirit lasted 20 times longer than its original design until its final communication to Earth on March 22, 2010. Opportunity continues to operate more than a decade after launch.

Mars Reconnaissance Orbiter

image

Our Mars Reconnaissance Orbiter left Earth in 2005 on a search for evidence that water persisted on the surface of Mars for a long period of time. While other Mars missions have shown that water flowed across the surface in Mars’ history, it remained a mystery whether water was ever around long enough to provide a habitat for life.

image

In addition to using the rover to study Mars, we’re using data and imagery from this mission to survey possible future human landing sites on the Red Planet.

Curiosity

image

The Curiosity rover is the largest and most capable rover ever sent to Mars. It launched November 26, 2011 and landed on Mars on Aug. 5, 2012. Curiosity set out to answer the question: Did Mars ever have the right environmental conditions to support small life forms called microbes? 

image

Early in its mission, Curiosity’s scientific tools found chemical and mineral evidence of past habitable environments on Mars. It continues to explore the rock record from a time when Mars could have been home to microbial life.

FUTURE

Space Launch System Rocket

image

We’re currently building the world’s most powerful rocket, the Space Launch System (SLS). When completed, this rocket will enable astronauts to begin their journey to explore destinations far into the solar system, including Mars.

Orion Spacecraft

image

The Orion spacecraft will sit atop the Space Launch System rocket as it launches humans deeper into space than ever before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities.

Mars 2020

image

The Mars 2020 rover mission takes the next step in exploration of the Red Planet by not only seeking signs of habitable conditions in the ancient past, but also searching for signs of past microbial life itself.

image

The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a “cache” on the surface of Mars. The mission will also test a method for producing oxygen from the Martian atmosphere, identify other resources (such as subsurface water), improve landing techniques and characterize weather, dust and other potential environmental conditions that could affect future astronauts living and working on the Red Planet.

image

For decades, we’ve sent orbiters, landers and rovers, dramatically increasing our knowledge about the Red Planet and paving the way for future human explorers. Mars is the next tangible frontier for human exploration, and it’s an achievable goal. There are challenges to pioneering Mars, but we know they are solvable. 

To discover more about Mars exploration, visit: https://www.nasa.gov/topics/journeytomars/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
image
image

Because space is vast and full of mysteries, NASA is developing a new rocket, a new spacecraft for astronauts and new facilities to launch them from. Our Space Launch System will be unlike any other rocket when it takes flight. It will be bigger, bolder and take astronauts and cargo farther than humankind has ever been -- to deep space destinations like the moon, a deep space gateway or even Mars. 

The Gravity-Slayer

image

When you plan to get to space, you use ice and fire. NASA’s Space Launch System uses four rocket engines in the center of the rocket and a pair of solid rocket boosters on opposite sides. All this power will propel the Space Launch System to gravity-slaying speeds of more than 17,000 miles per hour! These are the things we do for space exploration, the greatest adventure that ever was or will be.

It is Known

image

It is known that according to Newton’s third law, for every action there is an equal and opposite reaction. That’s how rocket propulsion works. Fuel burned in combustion chambers causes hot gases to shoot out the bottom of the engine nozzles. This propels the rocket upward. 

Steammaker

image

It is also known that when you combine hydrogen and oxygen you get: water. To help SLS get to space, the rocket’s four RS-25 engines shoot hydrogen and oxygen together at high speeds, making billowing clouds of steaming hot water vapor. The steam, funneled through the engine nozzles, expands with tremendous force and helps lift the rocket from the launchpad. 

RS-25: Ice King

image

It takes a lot of fuel (hydrogen) and a lot of oxygen to make a chemical reaction powerful enough to propel a rocket the size of a skyscraper off the launch pad. To fit more hydrogen and oxygen into the tanks in the center of the rocket where they’re stored, the hydrogen and oxygen are chilled to as low as -400 degrees Fahrenheit. At those temperatures, the gases become icy liquids. 

The Fire that Burns Against the Cold

image

The hydrogen-oxygen reaction inside the nozzles can reach temperatures up to 6,000 degrees Fahrenheit (alas, only Valyrian steel could withstand those temperatures)! To protect the nozzle from this heat, the icy hydrogen is pumped through more than a thousand small pipes on the outside of the nozzle to cool it. After the icy liquid protects the metal nozzles, it becomes fuel for the engines. 

Where is my FIRE?

image

The Space Launch System solid rocket boosters are the fire and the breakers of gravity’s chains. The solid rocket boosters’ fiery flight lasts for two minutes. They burn solid fuel that’s a potent mixture of chemicals the consistency of a rubber eraser. When the boosters light, hot gases and fire are unleashed at speeds up to three times the speed of sound, propelling the vehicle to gravity-slaying speed in seconds. 

Testing is Here

image

To make sure everything works on a rocket this big, it takes a lot of testing before the first flight. Rocket hardware is rolling off production lines all over the United States and being shipped to testing locations nationwide. Some of that test hardware includes replicas of the giant tanks that will hold the icy hydrogen and oxygen.

As Rare as Dragonglass

image

Other tests include firing the motor for the solid rocket boosters. The five-segment motor is the largest ever made for spaceflight and the part that contains the propellant that burns for two fiery, spectacular minutes. It’s common during ground test firings for the fiery exhaust to turn the sand in the Utah desert to glass.

Hold the Door

image

When all the hardware, software and avionics for SLS are ready, they will be shipped to Kennedy Space Center where the parts will be assembled to make the biggest rocket since the Saturn V. Then, technicians will stack Orion, NASA’s new spacecraft for taking astronauts to deep space, on top of SLS. All this work to assemble America’s new heavy-lift rocket and spacecraft will be done in the Vehicle Assembly Building -- one of the largest buildings in the world. Hold the door to the Vehicle Assembly Building open, because SLS and Orion are coming!

Learn more about our Journey to Mars here: https://www.nasa.gov/topics/journeytomars/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Find Out Why We’re Blasting this Rocket with Wind

The world’s most powerful rocket – our Space Launch System (SLS) – may experience ground wind gusts of up to 70 mph as it sits on the launch pad before and during lift off for future missions. Understanding how environmental factors affect the rocket will help us maintain a safe and reliable distance away from the launch tower during launch.

image

How do we even test this? Great question! Our Langley Research Center’s 14x22-Foot Subsonic Wind Tunnel in Hampton, Virginia, is designed to simulate wind conditions. Rather than having to test a full scale rocket, we’re able to use a smaller, to-scale model of the spacecraft.

image

Wind tunnel tests are a cost effective and efficient way to simulate situations where cross winds and ground winds affect different parts of the rocket. The guidance, navigation, and control team uses the test data as part of their simulations to identify the safety distance between the rocket and the launch tower.  

image

SLS is designed to evolve as we move crew and cargo farther into the solar system than we have ever been before. The Langley team tested the second more powerful version of the SLS rocket, known as the Block 1B, in both the crew and cargo configuration. 

Take a behind-the-scenes look at the hard work being done to support safe explorations to deep-space...

Below, an engineer simulates ground winds on the rocket during liftoff by using what’s called smoke flow visualization. This technique allows engineers to see how the wind flow behaves as it hits the surface of the launch tower model.

image

The 6-foot model of the SLS rocket undergoes 140 mph wind speeds in Langley’s 14x22-Foot Subsonic Wind Tunnel. Engineers are simulating ground winds impacting the rocket as it leaves the launch pad.

image

The cargo version of the rocket is positioned at a 0-degree angle to simulate the transition from liftoff to ascent as the rocket begins accelerating through the atmosphere.

image

Here, engineers create a scenario where the rocket has lifted off 100 feet in the air past the top of the launch tower. At this point in the mission, SLS is moving at speeds of about 100 mph!

image

Engineers at Langley collect data throughout the test which is used by the rocket developers at our Marshall Space Flight Center in Huntsville, Alabama, to analyze and incorporate into the rocket’s design.

image

Learn more about our Space Launch System rocket HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/


Tags
8 years ago

Testing Time for the SLS Engine Section

In schools across the country, many students just finished final exams. Now, part of the world’s most powerful rocket, the Space Launch System (SLS), is about to feel the pressure of testing time. The first SLS engine section has been moving slowly upriver from Michoud Assembly Facility near New Orleans, but once the barge Pegasus docks at our Marshall Space Flight Center in Huntsville, Alabama, the real strength test for the engine section will get started.

image

The engine section is the first of four of the major parts of the core stage that are being tested to make sure SLS is ready for the challenges of spaceflight.

image

The engine section is located at the bottom of the rocket. It has a couple of important jobs. It holds the four RS-25 liquid propellant engines, and it serves as one of two attach points for each of the twin solid propellant boosters. This first engine section will be used only for ground testing. 

image

Of all the major parts of the rocket, the engine section gets perhaps the roughest workout during launch. Millions of pounds of core stage are pushing down, while the engines are pushing up with millions of pounds of thrust, and the boosters are tugging at it from both sides. That’s a lot of stress. Maybe that’s why there’s a saying in the rocket business: “Test like you fly, and fly like you test.”

image

After it was welded at Michoud, technicians installed the thrust structure, engine supports and other internal equipment and loaded it aboard the Pegasus for shipment to Marshall.

image

Once used to transport space shuttle external tanks, Pegasus was modified for the longer SLS core stage by removing 115 feet out of the middle of the barge and added a new 165-foot section with a reinforced main deck. Now as long as a football field, Pegasus – with the help of two tugboats – will transport core stage test articles to Marshall Space Flight Center as well as completed core stages to Stennis Space Center in Mississippi for test firing and then to Kennedy Space Center for launch.

Testing Time For The SLS Engine Section

The test article has no engines, cabling, or computers, but it will replicate all the structures that will undergo the extreme physical forces of launch. The test article is more than 30 feet tall, and weighs about 70,000 pounds. About 3,200 sensors attached to the test article will measure the stress during 59 separate tests. Flight-like physical forces will be applied through simulators and adaptors standing in for the liquid hydrogen tank and RS-25 engines.

image

The test fixture that will surround and secure the engine section weighs about 1.5 million pounds and is taller than a 5-story building. Fifty-five big pistons called “load lines” will impart more than 4.5 million pounds of force vertically and more than 428,000 pounds from the side.

image

The engineers and their computer design tools say the engine section can handle the stress.  It’s the test team’s job prove that it can.

For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/


Tags
8 years ago

Put to the Test: Orion Service Module

Blasted with sound, shaken for hours and pyro detonated, the Orion Service Module Completes Ground Tests at our Glenn Research Center

We recently completed a structural integrity evaluation on the test version of the Orion service module at our Plum Brook Station in Sandusky, Ohio. Designed to ensure the module can withstand launch atop the Space Launch System (SLS) rocket, the battery of tests was conducted in stages over a 16-month period.

The 13-ton European service module will power, propel and cool Orion, while supplying vital oxygen and water to its crew during future missions.

The Powerhouse: Space Launch System and Orion

Put To The Test: Orion Service Module

Our Space Launch System is an advanced launch vehicle that will usher in a new era of human exploration beyond Earth’s orbit. SLS, with its unparalleled power and capabilities, will launch missions to explore deep-space destinations aboard our Orion spacecraft.

image

What is Orion? Named after one of the largest constellations in the night sky and drawing from more than 50 years of spaceflight research and development, the Orion spacecraft will be the safest, most advanced spacecraft ever built. It will be flexible and capable enough to take astronauts to a variety of deep destinations, including Mars.

Welcome to the Buckeye State

image

In November 2015, the full-sized test version of the Orion service module arrived at Cleveland Hopkins Airport aboard an Antonov AN-124. After being unloaded from one of the world’s largest transport aircraft, the module was shipped more than 50 miles by truck to Plum Brook for testing.

Spread Your Wings

image

The first step of the service module’s ground test journey at Plum Brook’s Space Power Facility, saw one of its 24-foot solar array wings deployed to verify operation of the power system. The test confirmed the array extended and locked into place, and all of the wing mechanisms functioned properly.

Can You Hear SLS Now?

image

The SLS will produce a tremendous amount of noise as it launches and climbs through our atmosphere. In fact, we’re projecting the rocket could produce up to 180 decibels, which is louder than 20 jet engines operating at the same time.

While at the Reverberant Acoustic Test Facility, the service module was hit with more than 150 decibels and 20-10,000 hertz of sound pressure. Microphones were placed inside the test environment to confirm it matched the expected acoustic environment during launch.

After being blasted by sound, it was time to rock the service module, literally.

Shake Without the Bake 

Launching atop the most powerful rocket ever built – we’re talking more than eight million pounds of thrust – will subject Orion to stresses never before experienced in spaceflight.

To ensure the launch doesn’t damage any vital equipment, the engineering team utilized the world’s most powerful vibration table to perform nearly 100 different tests, ranging from 2.5 Hz to 100 Hz, on the module in the summer of 2016. 

Gotta Keep ‘Em Separated

The team then moved the Orion test article from the vibration table into the high bay for pyroshock tests, which simulated the shock the service module will experience as it separates from the SLS during launch.

Following the sound, vibration and separation tests, a second solar array wing deployment was conducted to ensure the wing continued to properly unfurl and function.

Headed South for the Summer

image

The ground test phase was another crucial step toward the eventual launch of Exploration Mission-1, as it validated extensive design prep and computer modeling, and verified the spacecraft met our safety and flight requirements.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

2016: This Year at NASA!

As 2016 comes to a close and prospects of the new year loom before us, we take a moment to look back at what we’ve accomplished and how it will set us ahead in the year to come.

image

2016 marked record-breaking progress in our exploration activities. We advanced the capabilities needed to travel farther into the solar system while increasing observations of our home and the universe, learning more about how to continuously live and work in space and, or course, inspiring the next generation of leaders to take up our journey to Mars and make their own discoveries.

Here are a few of the top NASA stories of 2016...

International Space Station

One Year Mission…completed!

image

NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko returned to Earth after spending a year in space. Testing the limits of human research, findings from their One Year Mission will help send humans farther into space than ever before.

Commercial Resupply

image

Commercial partners Orbital ATK and SpaceX delivered tons (yes literally tons) of cargo to the International Space Station. This cargo supported hundreds of science experiments and technology demonstrations crucial to our journey to Mars.

Mars

Expandable Habitats

image

The Bigelow Expandable Activity Module (BEAM) was one of the technology demonstrations delivered to the space station in April. Expandable habitats greatly decrease the amount of transport volume for future space missions.

Booster Test Firing

image

In June, a booster for our Space Launch System (SLS) rocket successfully fired up. It will be used on the first un-crewed test flight of SLS with the Orion spacecraft in 2018. Eventually, this rocket and capsule will carry humans into deep space and one day…Mars!

InSight

image

This year we updated the milestones for our InSight mission with a new target launch window beginning in May 2018. This mission will place a fixed science outpost on Mars to study its deep interior. Findings and research from this project will address one of the most fundamental questions we have about the planetary and solar system science…how in the world did these rocky planets form?

Solar System and Beyond

Juno

image

On July 4, our Juno spacecraft arrived at Jupiter. This mission is working to improve our understanding of the solar system’s beginnings by revealing the origin and evolution of Jupiter.

OSIRIS-REx

image

In September, we launched our OSIRIS-REx spacecraft…which is America’s first-ever asteroid sample return mission. This spacecraft will travel to a near-Earth asteroid, called Bennu, where it will collect a sample to bring back to Earth for study.

James Webb Space Telescope

image

In February, the final primary mirror segment of our James Webb Space Telescope was installed. This will be the world’s most powerful space telescope ever, and is scheduled to launch in 2018. Webb will look back in time, studying the very first galaxies ever formed.

Kepler

image

In May, our Kepler mission verified the discovery of 1,284 new planets. Kepler is the first NASA mission to find potentially habitably Earth-sized planets.

Earth Right Now

Earth Expeditions

image

Our efforts to improve life on Earth included an announcement in March of a collection of Earth Science field campaigns to study how our planet is changing. These Earth Expeditions sent scientists to places like the edge of the Greenland ice sheet to the coral reefs of the South Pacific to delve into challenging questions about how our planet is changing…and what impacts humans are having on it.

Small Satellites

image

In November, we announced plans to launch six next-generation Earth-observing small satellite missions. One uses GPS signals to measure wind in hurricanes and tropical systems in greater detail than ever before.

Aeronautics Research

Our efforts in 2016 to make air travel cleaner, safer and quieter included new technology to improve safety and efficiency of aircraft arrivals, departures and service operations.

X-Plane

image

In June, we highlighted our first designation of an experimental airplane, or X-plane, in a decade. It will test new electric propulsion technology.

Drone Technolgy

image

In October, we evaluated a system being developed for the Federal Aviation Administration to safely manage drone air traffic.

Technology

Electric Propulsion

image

We selected Aerojet Rocketdyne to develop and advanced electric propulsion system to enable deep space travel to an asteroid and Mars.

Spinoffs

image

Our technology transfer program continued to share the agency’s technology with industry, academia and other government agencies at an unprecedented rate.

Centennial Challenges

image

Our Centennial Challenges program conducted four competition events in 2016 to spark innovation and enable solutions in important technology focus areas.

Watch the full video recap of ‘This Year @NASA’ here:

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

How Will We Safely Send the First Humans to the Red Planet?

We’ve been exploring the Red Planet for over 50 years -- Mariner 4 launched on this day (Nov. 28) in 1964 and took the first photos of Mars from space the following summer.

image

We first explored the surface 40 years ago (Viking, 1976) and have had a continuous scientific presence on Mars for nearly 20 years, starting with the landing of the Pathfinder lander and Sojourner rover on July 4, 1997.

We currently have three orbiters – MAVEN, MRO and Mars Odyssey – and two rovers – Curiosity and Opportunity – actively exploring Mars.

These robotic explorers have already taught us a lot about the Red Planet, and future missions will teach us even more about how humans can live and work on the surface.

image

After sending humans on space exploration missions for the last 50 years, we have gained the experience and knowledge to send the first people to Mars. We are working across all areas to prepare for that historic day and want to share our progress with you. 

Building the ride to Mars: NASA’s Space Launch System.

Our ride to Mars, the Space Launch System, is being built right now to meet the challenges of exploring deep space. When it comes to our journey to Mars and beyond, there are no small steps. Our video series by the same name breaks down those steps to show how SLS will send missions to the Red Planet.

image

Living on the Space Station will help humans live safely on Mars.

New crew members of Expedition 50 will soon conduct more than 250 experiments on the International Space Station. More than 2,000 experiments have already been done! 

Experiments in fields such as biology, Earth science, physical sciences and human research are helping us unlock the knowledge needed to enable humans to live in space for long durations. If you missed the recent launch, check out NASA TV for a replay.

image

Testing Orion helps crew live and work in space and get home safely.

Scheduled to launch atop the Space Launch System rocket for the first time in 2018, an uncrewed Orion will travel farther into space than any spacecraft built for humans has ever gone before. When Orion returns to Earth, splashing down into the Pacific Ocean, it will take a landing and recovery group to safely return the capsule and crew back to land. A variety of testing on the ground, including to structures and parachutes, is helping make sure Orion can safely carry crew to new destinations in the solar system.

image

In late October, this recovery group, including NASA’s Ground Systems Development and Operations Program, the U.S. Navy, U.S. Air Force and contractor employees, completed its fifth successful practice run to recover Orion aboard the USS San Diego. 

image

We're using high resolution imagery from the Mars Reconnaissance Orbiter to learn more about potential landing sites for a human mission.

Who knows what surprises the Red Planet holds?

Our Curiosity Rover has discovered all kinds of interesting Mars features including meteorites. How do you learn more about a meteorite? Zap it with lasers, of course.

image

This golf-ball-sized, iron-nickel meteorite was recently found on Mars where ancient lakebed environments once existed. Named “Egg Rock” for the area in which it was found, it is the first meteorite to be examined using a laser-firing spectrometer.

By studying the conditions on Mars with vehicles like Curiosity, scientists are able to help prepare future astronauts to live on Mars.

How do you prepare the tallest rocket ever built for its first launch?

Another important component in successfully launching the Space Launch System rocket and Orion spacecraft on a Journey to Mars is the infrastructure work being done by our Ground Systems Development and Operations Program at Kennedy Space Center.

image

While efforts at our Vehicle Assembly Building continue, we hope you’ll be making your plans to join us at the launch pad for the first flight of SLS with Orion in 2018!

Preparing for a human journey to Mars

The next Mars rover will launch in 2020, and will investigate a region of Mars where the ancient environment may have been favorable for microbial life, probing the Martian rocks for evidence of past life. 

image

It will collect samples and cache them on the surface for potential return to Earth by a future mission. Mars 2020 will also conduct the first investigation into the usability and availability of Martian resources, including oxygen, in preparation for human missions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Splish, Splash, Orion Takes a Bath

The Orion spacecraft is a capsule built to take humans farther than they’ve ever gone before, to deep space and eventually Mars. But before astronauts travel inside this new vehicle, we have to perform tests to ensure their safety.

image

One of these tests that we’ll talk about today simulates an ocean splashdown. Water impact testing helps us evaluate how Orion may behave when landing under its parachutes in different wind conditions and wave heights. The spacecraft has been undergoing a series of these tests at our Langley Research Center’s Hydro Impact Basin…which is our fancy way of saying pool.

image

The test capsule, coupled with the heat shield from Orion’s first spaceflight, swung like a pendulum into Langley’s 20-foot-deep basin on Aug. 25.

image

Inside the capsule were two test dummies – one representing a 105-pound woman and the other, a 220-pound man — each wearing spacesuits equipped with sensors. These sensors will provide critical data that will help us understand the forces crew members could experience when they splash down in the ocean.

This specific drop was the ninth in a series of 10 tests taking place at Langley’s Landing and Impact Research Facility. It was designed to simulate one of the Orion spacecraft’s most stressful landing scenarios, a case where one of the capsule’s three main parachutes fails to deploy. That would cause Orion to approach its planned water landing faster than normal and at an undesirable angle.

Under ideal conditions, the Orion capsule would slice into the water of the Pacific Ocean traveling about 17 miles per hour. This test had it hitting the pool at about 20 mph, and in a lateral orientation. Instead of being pushed down into their seats, astronauts in this scenario would splashdown to the side.

With this test’s success and one final drop in this series scheduled for mid-September, researchers have accumulated a lot of important information.

To find out more, visit nasa.gov or follow @nasaorion​ on Tumblr, Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: 4 Things We’re Doing Now

We’re working hard to send humans to Mars in the 2030s. Here are just a few of the things we’re doing now that are helping us prepare for the journey:

1. Research on the International Space Station

image

The International Space Station is the only microgravity platform for the long-term testing of new life support and crew health systems, advanced habitat modules and other technologies needed to decrease reliance on Earth.

image

When future explorers travel to the Red Planet, they will need to be able to grow plants for food, atmosphere recycling and physiological benefits. The Veggie experiment on space station is validating this technology right now! Astronauts have grown lettuce and Zinnia flowers in space so far.

image

The space station is also a perfect place to study the impacts of microgravity on the human body. One of the biggest hurdles of getting to Mars in ensuring that humans are “go” for a long-duration mission. Making sure that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth is extremely important. 

image

Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now! Former astronaut Scott Kelly recently completed his Year in Space mission, where he spent a year aboard the space station to learn the impacts of microgravity on the human body.

A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on the Red Planet. We need to understand how human systems like vision and bone health are affected and what countermeasures can be taken to reduce or mitigate risks to crew members.

2. Utilizing Rovers & Tech to Gather Data

image

Through our robotic missions, we have already been on and around Mars for 40 years! Before we send humans to the Red Planet, it’s important that we have a thorough understanding of the Martian environment. Our landers and rovers are paving the way for human exploration. For example, the Mars Reconnaissance Orbiter has helped us map the surface of Mars, which will be critical in selecting a future human landing site on the planet.

image

Our Mars 2020 rover will look for signs of past life, collect samples for possible future return to Earth and demonstrate technology for future human exploration of the Red Planet. These include testing a method for producing oxygen from the Martian atmosphere, identifying other resources (such as subsurface water), improving landing techniques and characterizing weather, dust and other potential environmental conditions that could affect future astronauts living and working on Mars.

image

We’re also developing a first-ever robotic mission to visit a large near-Earth asteroid, collect a multi-ton boulder from its surface and redirect it into a stable orbit around the moon. Once it’s there, astronauts will explore it and return with samples in the 2020s. This Asteroid Redirect Mission (ARM) is part of our plan to advance new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.

3. Building the Ride

Okay, so we’ve talked about how we’re preparing for a journey to Mars…but what about the ride? Our Space Launch System, or SLS, is an advanced launch vehicle that will help us explore beyond Earth’s orbit into deep space. SLS will be the world’s most powerful rocket and will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars.

image

In the rocket's initial configuration it will be able to take 154,000 pounds of payload to space, which is equivalent to 12 fully grown elephants! It will be taller than the Statue of Liberty and it’s liftoff weight will be comparable to 8 fully-loaded 747 jets. At liftoff, it will have 8.8 million pounds of thrust, which is more than 31 times the total thrust of a 747 jet. One more fun fact for you…it will produce horsepower equivalent to 160,000 Corvette engines!

image

Sitting atop the SLS rocket will be our Orion spacecraft. Orion will be the safest most advanced spacecraft ever built, and will be flexible and capable enough to carry humans to a variety of destinations. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.

4. Making it Sustainable

When humans get to Mars, where will they live? Where will they work? These are questions we’ve already thought about and are working toward solving. Six partners were recently selected to develop ground prototypes and/or conduct concept studies for deep space habitats.

image

These NextSTEP habitats will focus on creating prototypes of deep space habitats where humans can live and work independently for months or years at a time, without cargo supply deliveries from Earth.

image

Another way that we are studying habitats for space is on the space station. In June, the first human-rated expandable module deployed in space was used. The Bigelow Expandable Activity Module (BEAM) is a technology demonstration to investigate the potential challenges and benefits of expandable habitats for deep space exploration and commercial low-Earth orbit applications.

Our journey to Mars requires preparation and research in many areas. The powerful new Space Launch System rocket and the Orion spacecraft will travel into deep space, building on our decades of robotic Mars explorations, lessons learned on the International Space Station and groundbreaking new technologies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: A New Rocket for the Journey

Do you know what the structural backbone is of our new rocket, the Space Launch System? If you answered the core stage, give yourself a double thumbs up! Or better yet, have astronaut Scott Kelly do it!

image

We’re on a journey to Mars. For bolder missions to deep space, we need a big, powerful rocket like SLS to take astronauts in the Orion spacecraft to places we've never gone before. The core stage is a major part of that story, as it will house the fuel and avionics systems that will power and guide the rocket to those new destinations beyond Earth’s orbit. Here's how:

It's Big, and It's Fast.

The core stage will be the largest rocket stage ever built and is under construction right now at our Michoud Assembly Facility in New Orleans. It will stand at 212 feet tall and weigh more than 2.3 million pounds with propellant. That propellant is cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. In just 8.5 minutes, the core stage will reach Mach 23, which is faster than 17,000 mph!

It's Smart.

image

Similar to a car, the rocket needs all the equipment necessary for the "drive" to deep space. The core stage will house the vehicle’s avionics, including flight computers, instrumentation, batteries, power handling, sensors and other electronics. That's a lot of brain power behind those orange-clad aluminum walls. *Fun fact: Orange is the color of the rocket's insulation.

It's a Five-Parter.

image

The core stage is made up of five parts. Starting from the bottom is the engine section, which will deliver the propellants to the four RS-25 engines. It also will house avionics to steer the engines, and be an attachment point for the two, five-segment solid rocket boosters. The engine section for the first SLS flight has completed welding and is in the final phases of manufacturing at Michoud.

image

Next up is the liquid hydrogen tank. It will hold 537,000 gallons of liquid hydrogen cooled to -423 degrees Fahrenheit. Right now, engineers are building the tank for the first SLS mission. It will look very similar to the qualification test article that just finished welding at Michoud. That's an impressive piece of rocket hardware!

image

The next part of the core stage is the intertank, which will join the propellant tanks. It has to be super strong because it is the attachment point for the boosters and absorbs most of the force when they fire 3.6 million pounds of thrust each. It's also a "think tank" of sorts, as it holds the SLS avionics and electronics. The intertank is even getting its own test structure at our Marshall Space Flight Center in Huntsville, Alabama.

image

And then there's the liquid oxygen tank. It will store 196,000 gallons of liquid oxygen cooled to -297 degrees. If you haven't done the math, that's 733,000 gallons of propellant for both tanks, which is enough to fill 63 large tanker trucks. Toot, toot. Beep, beep! A confidence version of the tank has finished welding at Michoud, and it's impressive. Just ask this guy.

image

The topper of the core stage is the forward skirt. Funny name, but serious hardware. It's home to the flight computers, cameras and avionics. The avionics system is being tested right now in a half-ring structure at the Marshall Center.

image

You can click here for more SLS core stage facts. We'll continue building, and see you at the launch pad for the first flight of SLS with Orion in 2018!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: What It’ll Take

Join us as we take a closer look at the next steps in our journey to the Red Planet:

The journey to Mars crosses three thresholds, each with increasing challenges as humans move farther from Earth. We’re managing these challenges by developing and demonstrating capabilities in incremental steps:

Earth Reliant

image

Earth Reliant exploration is focused on research aboard the International Space Station. From this world-class microgravity laboratory, we are testing technologies and advancing human health and performance research that will enable deep space, long duration missions.

On the space station, we are advancing human health and behavioral research for Mars-class missions. We are pushing the state-of-the-art life support systems, printing 3-D parts and analyzing material handling techniques.

Proving Ground

image

In the Proving Ground, we will learn to conduct complex operations in a deep space environment that allows crews to return to Earth in a matter of days. Primarily operating in cislunar space (the volume of space around the moon). We will advance and validate the capabilities required for humans to live and work at distances much farther away from our home planet…such as at Mars.

Earth Independent

image

Earth Independent activities build on what we learn on the space station and in deep space to enable human missions to the Mars vicinity, possibly to low-Mars orbit or one of the Martian moons, and eventually the Martian surface. Future Mars missions will represent a collaborative effort between us and our partners.

image

Did you know….that through our robotic missions, we have already been on and around Mars for 40 years! Taking nearly every opportunity to send orbiters, landers and rovers with increasingly complex experiments and sensing systems. These orbiters and rovers have returned vital data about the Martian environment, helping us understand what challenges we may face and resources we may encounter.

image

Through the Asteroid Redirect Mission (ARM), we will demonstrate an advanced solar electric propulsion capability that will be a critical component of our journey to Mars. ARM will also provide an unprecedented opportunity for us to validate new spacewalk and sample handling techniques as astronauts investigate several tons of an asteroid boulder.

Living and working in space require accepting risks – and the journey to Mars is worth the risks. A new and powerful space transportation system is key to the journey, but we will also need to learn new ways of operating in space.

We Need You!

image

In the future, Mars will need all kinds of explorers, farmers, surveyors, teachers…but most of all YOU! As we overcome the challenges associated with traveling to deep space, we will still need the next generation of explorers to join us on this journey. Come with us on the journey to Mars as we explore with robots and send humans there one day.

Join us as we go behind-the-scenes:

We’re offering a behind-the-scenes look Thursday, Aug. 18 at our journey to Mars. Join us for the following events:

Journey to Mars Televised Event at 9:30 a.m. EDT Join in as we host a conversation about the numerous efforts enabling exploration of the Red Planet. Use #askNASA to ask your questions! Tune in HERE.

Facebook Live at 1:30 p.m. EDT Join in as we showcase the work and exhibits at our Michoud Assembly Facility. Participate HERE.

Hot Fire Test of an RS-25 Engine at 6 p.m. EDT The 7.5-minute test is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. Watch HERE.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Special Edition: Viking 40th Anniversary

image

Mars is hard. Forty years ago this week, our Viking mission found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. This is astonishing considering that many of the spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin.

Here’s a few things to know about the Viking missions that ushered in a new era of Mars explorations 40 years ago:

1. Multi Mission

image

The Viking mission consisted of four spacecraft – two orbiters and two landers. All four made significant science discoveries.

2. Last Minute Switch

image

The spacecraft eventually named Viking 2 was supposed to launch first, but a battery problem prompted us to send the second spacecraft first. Batteries recharged, Viking 2 was then sent to rendezvous with the Red Planet.

3. Not Quite the First

image

Viking 1 was the first to send back science from the surface of Mars, but the honor of the first Mars landing goes to the Soviet Union’s Mars 3. The Soviet spacecraft landed on Mars in December 1970, but sent back only 20 seconds of video data before going silent.

4. Viking 1 Quick Stats

image

Viking 1 was launched Aug. 20 1975, and arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia.

5. Viking 2 Quick Stats

image

Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.

image

For more information about the Viking missions, and to celebrate the 40th anniversary, check out our list of events HERE.

Discover the full list of 10 things to know about our solar system this week HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Four Cool Facts About Our New Rocket’s Booster Test Firing

The countdown to our last full-scale test firing of NASA’s Space Launch System (SLS) solid rocket boosters has begun (mark your calendars: June 28, 8:05 a.m. MDT [local time] 10:05 a.m. EDT). SLS is NASA’s new rocket that can go to deep space destinations, and this test is one more step on our Journey to Mars. This test will be broadcast live on NASA TV and our Facebook page. For those watching at home or work, here are four cool things that might not be so obvious on the screen.

1. So Hot, It Turns Sand Into Glass

image

With expanding gases and flames exiting the nozzle at speeds in excess of Mach 3 and temperatures reaching 3,700 degrees Fahrenheit, say goodbye to some of the sand at Orbital ATK’s test facility in the Utah desert because after the test, the sand at the aft, or rear, end of the booster motor will be glass.

2. This Motor’s Chill

Four Cool Facts About Our New Rocket’s Booster Test Firing

This motor has been chilling — literally, down to 40 degrees — since the first week in May in Orbital ATK’s “booster house,” a special building on rails that moves to enclose the booster and rolls back so the motor can be test-fired. Even though SLS will launch from the normally balmy Kennedy Space Center in Florida, temperatures can vary there and engineers need to be sure the booster will perform as expected whether the propellant inside the motor is 40 degrees or 90 degrees (the temperature of the propellant during the first full-scale test, Qualification Motor 1 or QM-1).

3. This Booster’s on Lockdown

image

If you happen to be near Promontory, Utah, on June 28, you can view the test for yourself in the public viewing area off State Route 83. And don’t worry, this booster’s not going anywhere — engineers have it locked down. The motor is held securely in place by Orbital ATK’s T-97 test stand.  During the test, the motor will push against a forward thrust block with more than three million pounds of force. Holding down the rocket motor is more than 13 million pounds of concrete — most of which is underground. The test stand contains a system of load cells that enable engineers to measure the thrust the motor produces and verify their predictions.

4. Next Time, It’s For Real

image

These solid rocket boosters are the largest and most powerful ever built for flight. They’ve been tested and retested in both full-scale and smaller subsystem-level tests, and vital parts like the nozzle, insulation and avionics control systems have been upgraded and revamped. Most of this work was necessary because, plainly put, SLS needs bigger boosters. Bigger boosters mean bolder missions – like around the moon during the first integrated mission of SLS and Orion. So the next time we see these solid rocket motors fire, they will be propelling SLS off the launch pad at Kennedy Space Center and on its first flight with NASA’s Orion spacecraft. For real.


Tags
9 years ago

Exploring an Asteroid Without Leaving Earth

image

You may remember that back in February, four crew members lived and worked inside our Human Research Exploration Analog (HERA). That crew, made up of 4 women, simulated a 715-day journey to a Near-Earth asteroid. Then in May, a second crew of 4 – this time, 4 men, launched on their simulated journey to that same asteroid.  These 30 day missions help our researchers learn how isolation and close quarters affect individual and group behavior. Studies like this at our Johnson Space Center prepare us for long duration space missions, like a trip to an asteroid or even to Mars. We now have a third crew, living and working inside the HERA. This is the spacecraft’s 11th crew. The mission began on June 11, and will end on August 10.

The crew members are currently living inside this compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. The only people they will talk with regularly are mission control and each other.

Exploring An Asteroid Without Leaving Earth

The HERA XI crew is made up of 3 men and 1 woman selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection. The four would-be astronauts are:

• Tess Caswell

• Kyle Foster

• Daniel Surber

• Emmanuel Urquieta

image

What will they be doing?

The crew will test hardware prototypes to get “the bugs worked out” before they are used in off-Earth missions. They will conduct experiments involving plants, brine shrimp, and creating a piece of equipment with a 3D printer. After their visit to an asteroid, the crew will simulate the processing of soil and rocks they collected virtually. Researchers outside of the spacecraft will collect data regarding team dynamics, conflict resolution and the effects of extended isolation and confinement.

image

How real is a HERA mission?

When we set up an analog research investigation, we try to mimic as many of the spaceflight conditions as we can. This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way, depending on how far their simulated spacecraft is from Earth.

Obviously we are not in microgravity, so none of the effects of microgravity on the human or the vehicle can be tested. You can simulate isolation to a great degree – although the crew knows they are note really isolated from humanity, the communications delays and ban from social media help them to suspend reality. We emulate confinement and the stress that goes along with it.

Scientists and researchers use analogs like HERA to gather more data for comparison to data collected aboard the space station and from other analogs so they can draw conclusions needed for a real mission to deep space, and one day for a journey to Mars.            

image

A few other details:

The crew follows a timeline that is similar to one used for the     ISS crew.

They work 16 hours a day, Monday through Friday. This     includes time for daily planning, conferences, meals and exercises.  

They will be growing and taking care of plants and     brine shrimp, which they will analyze and document.

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

As with the 2 earlier missions this year, this mission will include 22 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

image

Want a full, 360 degree look at HERA? Check out and explore the inside of the habitat.

For more information on our Human Research Program, visit: www.nasa.gov/hrp.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

4 people are living in an isolated habitat for 30 days. Why? Science!

This 30 day mission will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won't go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media kids!

The only people they will talk with regularly are mission control and each other.

image

The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection.

What will they be doing?

Because this mission simulates a 715-day journey to a Near-Earth asteroid, the four crew members will complete activities similar to what would happen during an outbound transit, on location at the asteroid, and the return transit phases of a mission (just in a bit of an accelerated timeframe). This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 10 minutes each way. The crew will also perform virtual spacewalk missions once they reach their destination, where they will inspect the asteroid and collect samples from it. 

A few other details:

The crew follows a timeline that is similar to one used for the ISS crew.

They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.  

They will be growing and taking care of plants and brine shrimp, which they will analyze and document.

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to maneuver through a debris field during the Earth-bound phase of the mission. 

image

Throughout the mission, researchers will gather information about cohabitation, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

image

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

image

In total, this mission will include 19 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

UPDATE:

Mission success! After a simulated mission to an asteroid, the crew “splashed down” around 10:30 p.m. EST on Wednesday, Feb. 24 and exited the habitat for the first time in 30 days.

Want a full, 360 degree look at HERA? Check out and explore the inside of the habitat.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

What’s Up for December?

image

View Mars right now, and prepare for 2016, the best Mars viewing year since 2005! Last month early risers watched small, reddish Mars dance with brighter Jupiter and Venus just before sunrise. 

image

This month Mars rises earlier-by about 2 a.m. local time. Its reddish color is unmistakable, even without a telescope. It's easy to see below the Moon and Jupiter on December 4. You won't see many features this month, because the planet is almost 10 times smaller than nearby Jupiter appears and 350 times smaller than the Moon appears to us on Earth.

image

You should also be able to see Mars' north polar region this month, because it's currently tilted towards Earth. 

image

You'll be amazed at the changes you'll see during 2016. January through December are all prime Mars observing months. Between January and May next year, Mars triples in apparent diameter as its orbit around the sun brings it closer to Earth. You'll even be able to see the areas on Mars where NASA's Mars landers are located.

image

By October, Mars shrinks in apparent size to less than half its May diameter as it speeds away from Earth. Mars shrinks even further from October through December, returning to the same size we saw in January 2016 by year's end.

So put Mars viewing on your calendar for 2016. You won't see Mars this size again until 2018, when Mars will put on an even better show.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

What Happened to Mars?

Billions of years ago, Mars was a very different world. Liquid water flowed in long rivers that emptied into lakes and shallow seas. A thick atmosphere blanketed the planet and kept it warm.

image

Today, Mars is bitter cold. The Red Planet’s thin and wispy atmosphere provides scant cover for the surface below.

image

Our MAVEN Mission

The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is part of our Mars Scout program. This spacecraft launched in November 2013, and is exploring the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.

image

The purpose of the MAVEN mission is to determine the state of the upper atmosphere of Mars, the processes that control it and the overall atmospheric loss that is currently occurring. Specifically, MAVEN is exploring the processes through which the top of the Martian atmosphere can be lost to space. Scientists think that this loss could be important in explaining the changes in the climate of Mars that have occurred over the last four billion years.

New Findings

Today, Nov. 5, we will share new details of key science findings from our ongoing exploration of Mars during a news briefing at 2 p.m. EDT. This event will be broadcast live on NASA Television. Have questions? Use #askNASA during the briefing.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
9 years ago

Where Will We Land On Mars?

image

What?

You’ve heard us say that we’re on a journey to Mars, but the Red Planet is big. Once we get there, where will we land the first humans? We’re holding the first Landing Sites/Exploration Zones Workshop for Human Missions to the Surface of Mars to figure it out. This first workshop was held Oct. 27-30, 2015 at the Lunar and Planetary Institute in Houston.

Why?

The goal of this workshop was to collect proposals for locations on Mars that would be of high scientific research value while also providing natural resources to enable explorers to land, live and work safely on the Red Planet. Determining where we will land humans on Mars is a multi-year process. There was around 45 proposal teams at the workshop. This was the first of many workshops to determine the best landing site for human exploration on Mars.

image

Why Now?

We plan to use existing assets at Mars, such as the Mars Reconnaissance Orbiter (MRO) and the Odyssey spacecraft, to support the selection process of potential Exploration Zones. However, the life expectancy of MRO and Odyssey are limited. We are eager to take advantage of the remaining operational years of those Martian images to gather high resolution maps of potential Exploration Zones while the spacecraft remain operational.

Stay Updated

The workshop will be aired live USTREAM starting at 2 p.m. EDT Tuesday, Oct. 27.

This blog post will also be updated daily with a recap from the workshop’s events.

For a full schedule of the event visit: http://www.hou.usra.edu/meetings/explorationzone2015/pdf/program.pdf

Day 1 Recap:

image

"There is no such thing as robotic exploration. All exploration is human exploration — the robot is just a tool.” - John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate

Day one of the workshop answered a lot of basic questions about why looking at landing sites now is important for the future of our journey to Mars.

Attendees heard from many presenters, including Ellen Ochoa, Director of Johnson Space Center and John Grunsfeld, Associate Administrator of NASA’s Science Mission Directorate.

Experts explained that in order to leverage our current assets at Mars and start the process of picking possible landing sites, we need to start the discussion now.

This data will Inform our efforts to define what we need as far as future reconnaissance capabilities at Mars and drive where we send robotic landers to get ground truth.

Check back tomorrow for the day two update, and watch live on USTREAM starting at 9 a.m. EDT.

BONUS: Have questions about potential landing sites on Mars? We’ll be hosting a live social Q&A tomorrow at 7 p.m. EDT. Two NASA experts and one 15-year old student on one of the proposal teams will be answering your questions. Tune in on USTREAM and use #askNASA.

Day 2 Recap:

image

The second day of the Mars Landing Sites Workshop was filled with presentations from various proposal groups. Contributors made cases for where the best science could be collected on the Martian surface.

We also had the opportunity to hear from a young presenter, Alex Longo. A 15-year old student from Raleigh, N.C.

Longo also joined us for the social Q&A where we answered questions from #askNASA. He, along with two NASA experts, fielded questions that ranged from specifics about the workshop, to chatting aboutMars mysteries.

Tune in tomorrow to watch more of the presentations and see potential Mars landing sites! Watch live on USTREAM starting at 9 a.m. EDT.

Check back tomorrow for the day three update.

Day 3 Recap:

image

The third day of the workshop included presentations from the remaining proposal teams. This final day of presentations will lead into the last day of the workshop, when groups will discuss all of the ideas shared during the past week.

The day got really exciting when our Space Exploration Vehicle (SEV) made an appearance. This SEV concept is designed to be flexible, depending on the exploration destination. The pressurized cabin can be used for surface exploration of planetary bodies, including near-Earth asteroids and Mars.

Tomorrow is the final day of the workshop and will include group discussions. Participants will have the chance to assess the proposed sites and talk about the future steps needed for selecting a potential human landing site for our journey to Mars.

Watch these discussions live on USTREAM starting at 9 a.m. EDT.

Final Day Recap:

image

The final day of our workshop on potential Mars landing sites included discussions on the presentations that were made throughout the week.

Participants also had the opportunity to hear from NASA experts like Jim Green, director of planetary science, about future exploration and our journey to Mars.

Video of the full workshop will be available on the Lunar Planetary Institute’s YouTube channel. For more information and updates on our journey to Mars, visit HERE.


Tags
9 years ago

President Obama Calls the International Space Station

President Obama made a special phone call today - all the way to the International Space Station. During his chat, American astronauts Scott Kelly and Kjell Lindgren highlighted some important things we’re doing here at NASA: 

One Year Mission

image

Astronaut Scott Kelly is a little over halfway through his One-Year Mission, and the President wanted to know how he was doing. Kelly’s year in space is providing essential research on our journey to Mars. The studies performed throughout his time on the space station will give us new insights to how the human body adjusts to weightlessness, isolation, radiation and stress during long duration spaceflight. 

Adjusting to Microgravity... Like Riding a Bike?

image

During the call, the President asked Kelly if anything has surprised him while he’s been in space. Kelly responded and told him that he was surprised at how easily he remembered and adapted to microgravity from his previous missions. The President remarked, “So being an astronaut is like riding a bicycle?”

In space, there is no “up” or “down.” That can mess with the human brain and affect the way people move and think in space. An investigation on the International Space Station seeks to understand how the brain changes in space and ways to deal with those changes.

Research on the International Space Station

image

November marks the 15 years of continuous human presence on the International Space Station! During the call, the President pointed out that many of today’s children have never known a time when we didn’t have astronauts living aboard the International Space Station. Pretty amazing! There are currently more than 400 experiments on the station that will not only help us achieve our goals in space, but will also benefit life on Earth. 

Inspiring the Next Generation

image

President Obama made sure to tell Kelly and Lindgren that he was proud of the work they’re doing to inspire the next generation of astronauts. He even mentioned how Scott Kelly’s Instagram feed provides an amazing glimpse into life for would-be astronauts. This next generation will be the first humans to step foot on Mars.

Journey To Mars

image

President Obama highlighted the fact that he has tasked NASA with sending humans on a journey to Mars. He hopes to see the first humans walk on the Martian surface in his lifetime, and supports the work we’re doing to get there. 


Tags
9 years ago

It’s a U.S. Record! Cumulative Days in Space: 383

image

Today, Astronaut Scott Kelly has broken the record for longest time spent in space by a U.S. astronaut! Over the course of his four missions, Kelly has spent 383 cumulative days in space. This record was previously held by Astronaut Mike Fincke, with 382 days in space over three flights. Here are some more fun facts about this milestone:

4: The number of humans that have spent a year or more in orbit on a single mission

215 Days: The record currently held by Mike Lopez-Alegria for most time on a single spaceflight by U.S. astronaut. On Oct. 29, Kelly will break this record

377 Days: The current record for most days in space by a U.S. female astronaut, held by Peggy Whitson

879 Days: The record for most cumulative days in space by a human, currently held by Russian cosmonaut Gennady Padalka

image

Why Spend a Year in Space?

Kelly’s One-Year Mission is an important stepping stone on our journey to Mars and other deep space destinations. These investigations are expected to yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.

Kelly is also involved in the Twins Study, which consists of ten separate investigations that are being conducted with his twin brother, who is on Earth. Since we are able to study two individuals who have the same genetics, but are in different environments for one year, we can gain a broader insight into the subtle effects and changes that may occur in spaceflight.

For regular updates on Kelly’s one-year mission aboard the space station, follow him on social media: Facebook, Twitter, Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Top 5 Things to Know This Week

1. A Ceres of Fortunate Events

image

Our Dawn mission continues its exploration at Ceres, and the team is working with the data coming back to Earth, looking for explanations for the tiny world’s strange features. Follow Dawn’s expedition HERE.

2. Icy Moon Rendezvous

image

One of the most interesting places in the entire solar system is Saturn’s moon Enceladus, with its underground ocean and spectacular geyser plume. This month, the Cassini spacecraft will be buzzing close by Enceladus several times, the last such encounters of the mission. On October 14, Cassini will perform a targeted flyby at a distance of just 1,142 miles (1,838 kilometers) over the moon’s northern latitudes. Ride along with Cassini HERE.

3. Make Your Own Mars Walkabout

image

You can retrace Opportunity’s journey, see where the Curiosity rover is now, or even follow along with fictional astronaut Mark Watney from The Martian movie using the free online app MarsTrek. The app lets you zoom in on almost any part of the planet and see images obtained by our spacecraft, so you can plan your on Red Planet excursion. Take a hike HERE.

4. Elusive Features on Jupiter

image

New imagery from our Hubble Space Telescope is capturing details never before seen on Jupiter. High-resolution maps and spinning globes, rendered in the 4K Ultra HD format, reveal an elusive wave and changes to Jupiter’s Great Red Spot. Explore Jupiter HERE.

5. Mr. Blue Sky

image

Another week, another amazing picture from Pluto. The first color images of Pluto’s atmospheric hazes, returned by our New Horizons spacecraft last week, reveal that the hazes are blue. Who would have expected a blue sky in the Kuiper Belt? Most of the data collected during July’s Pluto flyby remains aboard the spacecraft, but the team publishes new batches of pictures and other findings on a weekly basis. Keep up with the latest HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

The Martian Movie and Our Real Journey to Mars

The Martian movie is set 20 years in the future, but here at NASA we are already developing many of the technologies that appear in the film. The movie takes the work we’re doing and extends it into fiction set in the 2030s, when NASA astronauts are regularly traveling to Mars and living on the surface. Here are a few ways The Martian movie compares to what we’re really doing on our journey to Mars:

Analog Missions

image

MOVIE: In the film, Astronaut Mark Watney is stranded on the Red Planet.

REALITY: In preparation for sending humans to Mars, we have completed one of the most extensive isolation missions in Hawaii, known as HI-SEAS. The goal of this study was to see how isolation and the lack of privacy in a small group affects social aspects of would-be explorers. The most recent simulation was eight months long, and the next mission is planned to last a year.

Spaceport

image

MOVIE: The Martian movie launches astronauts on the Aries missions from a refurbished and state of the art space center.

REALITY: Currently, the Ground Systems Development and Operations’ primary objective is to prepare the center to process and launch the next-generation vehicles and spacecraft designed to achieve our goals for space exploration. We are not only working to develop new systems, but also refurbishing and upgrading infrastructure to meet future demands.

Deep Space Propulsion

image

MOVIE: In the film, the astronauts depart the Red Planet using a propulsion system know as the Mars Ascent Vehicle (MAV).

REALITY: We are currently developing the most powerful rocket we’ve ever built, our Space Launch System (SLS). Once complete, this system will enable astronauts to travel deeper into the solar system than ever before! The RS-25 engines that will be used on the SLS, were previously utilized as the main engine on our space shuttles. These engines have proven their reliability and are currently being refurbished with updated and improved technology for our journey to Mars.

Mission Control

image

MOVIE: In the movie, Mission Control operations support the Aries 3 crew.

REALITY: On our real journey to Mars, Mission Control in Houston will support our Orion spacecraft and the crew onboard as they travel into deep space.

Habitat

image

MOVIE: The artificial living habitat on Mars in The Martian movie is constructed of industrial canvas and contains an array of life support systems.

REALITY: The Human Exploration Research Analog (HERA), formerly known as the Deep Space Habitat, is a three-story module that was designed and created through a series of university competitions. Studies conducted in habitat mockups will allow us to evolve this technology to create a reliable structures for use on Mars.

Rover

The Martian Movie And Our Real Journey To Mars

MOVIE: The characters in the film are able to cruise around the Red Planet inside the Mars Decent Vehicle (MDV).

REALITY: We are currently developing a next generation vehicle for space exploration. Our Mars Exploration Vehicle (MEV) is designed to be flexible depending on the destination. It will have a pressurized cabin, ability to house two astronauts for up to 14 days and will be about the size of a pickup truck.

Harvest

image

MOVIE: Astronaut Mark Watney grows potatoes on Mars in The Martian movie.

REALITY: We’re already growing and harvesting lettuce on the International Space Station in preparation for deep space exploration. Growing fresh food in space will provide future pioneers with a sustainable food supplement, and could also be used for recreational gardening during deep space missions.

Spacesuit

image

MOVIE: The spacesuit worn by astronauts in the film allows them to work and function on the surface of Mars, while protecting them from the harsh environment.

REALITY: Prototypes of our Z-2 Exploration Suit are helping to develop the technologies astronauts will use to live and work on the the Martian surface. Technology advances in this next generation spacesuit would shorten preparation time, improve safety and boost astronaut capabilities during spacewalks and surface activities.  


Tags
9 years ago

Solar System: Top 5 Things to Know This Week

It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:

1) Mars!

image

With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.

2) HTV-5 Cargo Ship

image

On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.

3) Pluto Continues to Excite

image

If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.

4) Cassini Mission

image

This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.

5) What Happened to Mars’ Atmosphere?

image

Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
9 years ago

Water on Mars!

image

Did you hear? New findings from our Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars.

Using an imaging spectrometer on MRO, we found hydrated minerals on slopes where mysterious streaks are seen on Mars. One thing that researchers noticed was that the darkish streaks appear to ebb and flow over time. During warm seasons, they darken and then fade in cooler seasons.

image

When discovered in 2010, these downhill flows known as recurring slope lineae (RSL) were thought to be related to liquid water. With the recent spectral detection of molecular water, we’re able to say it’s likely a shallow subsurface flow explains the darkening.

Mars is so cold, how could liquid water flow there? Great question! Since this liquid water is briny, the freezing point would be lower than that of pure water. Also, these saline slopes appear on Mars when temperatures are above minus 10 degrees Fahrenheit (minus 23 Celsius).

The dark, narrow streaks flowing downhill in the below image are roughly the length of a football field.

image

So there’s water, but how much? Currently we think this area has a very small amount of water, probably just enough to wet the top layer of the surface of Mars. The streaks are around four to five meters wide and 200 to 300 meters long.

Could humans drink this water? The salts in the water appear to be perchlorates, so you probably wouldn’t want to drink the water. It would most likely be very salty and would need to be purified before human consumption.

Perchlorate...What is that? A perchlorate is a salt that absorbs water from the air. Learn more about how it’s helping us unlock the mysteries of Mars in this video:

What’s next? We want to look for more locations where brine flows may occur. We have only covered 3% of Mars at resolutions high enough to see these features.

For more information on the Mars announcement, visit our Journey to Mars landing page. There is also a full recap of the press conference HERE, and a short recap below.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Top 10 Ways the Space Station is Helping Get Us to Mars

Believe it or not, the International Space Station is paving our way to Mars. Being the only microgravity laboratory in which long-duration investigations can take place, it provides deeper understanding of how the human body reacts to long-term spaceflight. Here are the top 10 ways the space station is helping us on our journey to the Red Planet:

10: Communication Delays

image

Have you ever sent a text and got frustrated when it took longer than 3 seconds to send? Imaging communicating from Mars where round-trip delays could take up to 31 minutes! Our Comm Delay Assessment studies the effects of delayed communications for interplanetary crews that have to handle medical and other emergencies in deep space.

9. Astronaut Functional Performance

image

After a long nights sleep, do you ever feel a bit clumsy when you first get out of bed? Imagine how crew members might feel after spending six months to a year in microgravity! Our Field Test investigation is working to understand the extend of physical changes in astronauts who live in space for long periods of time, with an aim toward improving recovery time and developing injury prevention methods for future missions.

8. Psychological Impacts of Isolation and Confinement

image

In order to study the behavioral issues associated with isolation and confinement, researchers evaluate the personal journals of space station crew members. These study results provide information to help prepare us for longer duration spaceflight.

7. Impacts on Vision

image

Did you know that long duration spaceflight can often cause changes to crew members’ vision? It can, and our Ocular Health study monitors microgravity-induced visual impairment, as well as changes believed to arise from elevated intracranial pressure. All of this work hopes to characterize how living in microgravity can affect the visual, vascular and central nervous systems.

6. Immune Responses

image

An important aspect of our journey to Mars is the need to understand how long-duration spaceflight affects they way crew members’ bodies defend agains pathogens. Our Integrated Immune investigation collects and analyzes blood, urine and saliva samples from crew members before, during and after spaceflight to monitor changes in the immune system.

5. Food for Long-Duration Crews

image

Just like a hiker preparing for a long trek, packing the foods that will give you the most energy for the longest amount of time is key to your success. This is also true for astronauts on long-duration missions. Our Energy investigation measures a crew members’ energy requirements, which is a crucial factor needed for sending the correct amount of the right types of food to space.

4. Exercise for Long-Term Missions

image

Rigorous exercise is already a regular part of astronauts’ routines, and continuing that focus will be critical to keeping crew members’ bodies strong and ready for a mission to Mars and a healthy return to Earth. Our Sprint investigation is studying the best combination of intensity and duration for exercise in space.

3. Determine Best Habitat/Environment for Crews

image

Have you ever complained about your room being too small? Imagine living in cramped quarters with an entire crew for months on a Mars mission! Our Habitability investigation collects observations that will help spacecraft designers understand how much habitable volume is required, and whether a mission’s duration impacts how much space crew members need.

2. Growing Food in Space

image

There’s nothing like fresh food. Not only does it provide valuable nutrition for astronauts, but can also offer psychological benefits from tending and harvesting the crops. Our Veggie investigation studies how to best utilize a facility aboard the space station for growing fresh produce in microgravity.

1. Manufacturing Items in Space

image

When crews head to Mars, there may be items that are unanticipated or that break during the mission. Our 3-D Printing in Zero-G Technology Demonstration would give crews the ability to manufacture new objects on demand while in space.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
9 years ago

The One-Year Mission

First off, what is the One-Year Crew? Obviously, they’re doing something for a year, but what, and why?

Two crew members on the International Space Station have just met the halfway point of their year in space. NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko are living in space for 342 days and will help us better understand the effects of microgravity on the human body.

Why 342 days and not 365? Thought you might ask. Due to crew rotation schedules, which involve training timelines and dictate when launches and landings occur, the mission was confined to 342 days. Plenty of time to conduct great research though!

image

The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.

The weightlessness of the space environment has various effects on the human body, including: Fluid shifts that cause changes in vision, rapid bone loss, disturbances to sensorimotor ability, weakened muscles and more.

The goal of the One-Year Mission is to understand and minimize these effects on humans while in space.

The Twins Study

image

A unique investigation that is being conducted during this year in space is the Twins Study. NASA Astronaut Scott Kelly’s twin brother Mark Kelly will spend the year on Earth while Scott is in space. Since their genetic makeup is as close to identical as we can get, this allows a unique research perspective. We can now compare all of the results from Scott Kelly in space to his brother Mark on Earth.

But why are we studying all of this? If we want to move forward with our journey to Mars and travel into deep space, astronauts will need to live in microgravity for long periods of time. In order to mitigate the effects of long duration spaceflight on the human body, we need to understand the causes. The One-Year mission hopes to find these answers.

Halfway Point

image

Today, September 15 marks the halfway point of their year in space, and they now enter the final stretch of their mission. 

Here are a few fun tidbits on human spaceflight to put things in perspective:

1) Scott Kelly has logged 180 days in space on his three previous flights, two of which were Space Shuttle missions. 

2) The American astronaut with the most cumulative time in space is Mkie Fincke, with 382 days in space on three flights. Kelly will surpass this record for most cumulative time in space by a U.S. astronaut on October 16.

3) Kelly will pass Mike Lopez-Alegria’s mark for most time on a single spaceflight (215 days) on October 29.

4) By the end of this one-year mission, Kelly will have traveled for 342 days, made 5,472 orbits and traveled 141.7 million miles in a single mission. 

Have you seen the amazing images that Astronaut Scott Kelly has shared during the first half of his year in space? Check out this collection, and also follow him on social media to see what he posts for the duration of his #YearInSpace: Facebook, Twitter, Instagram. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Space Launch System

image

Our Space Launch System (SLS) is an advanced launch vehicle for exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars!

image

A launch system required to carry humans faster and farther than ever before will need a powerful engine, aka the RS-25 engine. This engine makes a modern race car or jet engine look like a wind-up toy. With the ability to produce 512,000 pounds of trust, the RS-25 engine will produce 10% more thrust than the Saturn V rockets that launched astronauts on journeys to the moon!

image

Another consideration for using these engines for future spaceflight was that 16 of them already existed from the shuttle program. Using a high-performance engine that already existed gave us a considerable boost in developing its next rocket for space exploration.

Once ready, four RS-25 engines will power the core stage of our SLS into deep space and Mars.


Tags
9 years ago

International Space Station

image

The International Space Station is an important and special place that is built on international cooperation and partnership. The station is a convergence of science, technology and human innovation that benefits and advances our global community here on Earth.

image

While the space station is an important aspect of our low-Earth orbit exploration, it is also the key to our next giant leap to deep space and our Journey to Mars. For example, our recent VEGGIE experiment aboard the space station is a critical aspect of long-duration exploration missions farther into the solar system. Food grown in space will be a resource for crew members that can provide them will essential vitamins and nutrients that will help enable deep space pioneering.

Another important experiment underway is the Twins Study that involves twin astronauts Scott and Mark Kelly. These investigations will provide insight into the subtle effects and changes that may occur in spaceflight as compared to Earth by studying two individuals who have the same genetics, but are in different environments for one year. You can follow Scott Kelly as he spends a year in space.

image

The space station is the second brightest object in the sky (after the moon, of course), and you don’t even need a telescope to see it! We can even tell you exactly when and where to look up to Spot the Station in your area!

So, as you look to spot the station in the sky, remember that even though it may look small from Earth, the crew onboard (and at home) are making contributions to international partnerships and global research.


Tags
9 years ago

Hot & Steamy RS-25 Engine Test

image

Today, we tested the RS-25 engine at Stennis Space Center in Mississippi, and boy was it hot! Besides the fact that it was a hot day, the 6,000 degree operating temperature of the hot fire test didn’t help things. This engine is one of four that will power the core stage of our Space Launch System (SLS) into deep space and to Mars. Today’s test reached 109% power and burned 150,000 gallons of liquid oxygen and 60,000 gallons of liquid hydrogen. When SLS launches with all 4 of its engines, it will be the most powerful rocket in the world!

image

This engine was previously used to to fly dozens of successful missions on the space shuttle, so you might be asking, “Why are we spending time testing it again if we already know it’s awesome?” Well, it’s actually really important that we test them specifically for use with SLS for a number of reasons, including the fact that we will be operating at 109% power, vs. the 104% power previously used.

image

If you missed the 535-second, ground rumbling test today -- you’re in luck. We’ve compiled all the cool stuff (fire, steam & loud noises) into a recap video. Check it out here:


Tags
9 years ago

That's one small bite for a man, one giant leaf for mankind: Today, astronauts Scott Kelly, Kjell Lindgren and Kimiya Yui of Japan sample the fruits of their labor after harvesting a crop of "Outredgeous" red romaine lettuce from the Veggie plant growth system on the International Space Station. They are the first people to eat food grown in space.

We’re maturing Veggie technology aboard the space station to provide future pioneers with a sustainable food supplement – a critical part of our Journey to Mars. As we move toward long-duration exploration missions farther into the solar system, Veggie will be a resource for crew food growth and consumption. It also could be used by astronauts for recreational gardening activities during deep space missions. 


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags