TumbleCatch

Your gateway to endless inspiration

OSIRIS-REx - Blog Posts

6 years ago

One Year of Leadership

image

It’s been one year since Jim Bridenstine was sworn in as our 13th administrator, starting the job on April 23, 2018. Since then, he has led the agency towards taking our nation farther than ever before — from assigning the first astronauts to fly on commercial vehicles to the International Space Station, to witnessing New Horizon’s arrival at the farthest object ever explored, to working to meet the challenge of landing humans on the lunar surface by 2024.

Here is a look at what happened in the last year under the Administrator’s leadership:

1. Assigned the first astronauts to fly on commercial spacecraft to the International Space Station.

image

Administrator Bridenstine introduced to the world on Aug. 3, 2018 the first U.S. astronauts who will fly on American-made, commercial spacecraft to and from the International Space Station — an endeavor that will return astronaut launches to U.S. soil for the first time since the space shuttle’s retirement in 2011.

“Today, our country’s dreams of greater achievements in space are within our grasp,” said Administrator Bridenstine. “This accomplished group of American astronauts, flying on new spacecraft developed by our commercial partners Boeing and SpaceX, will launch a new era of human spaceflight.”

2. Announced the first commercial effort to regularly send science payloads to the Moon.

image

Administrator Bridenstine announced new Moon partnerships with American companies — an important step to achieving long-term scientific study and human exploration of the Moon and Mars. Nine U.S. companies were named as eligible to bid on NASA delivery services to the Moon through Commercial Lunar Payload Services (CLPS) contracts on Nov. 29, 2018.  

3. Witnessed the teamwork that led to the latest mission to the Red Planet with Mars InSight’s landing.

image

On Nov. 26, 2018, the InSight lander successfully touched down on Mars after an almost seven-month, 300-million-mile (485-million-kilometer) journey from Earth. Administrator Bridenstine celebrated with the members of Mars Cube One and Mars InSight team members after the Mars lander successfully landed and began its mission to study the “inner space” of Mars: its crust, mantle and core.

"Today, we successfully landed on Mars for the eighth time in human history,” said NASA Administrator Jim Bridenstine. “InSight will study the interior of Mars, and will teach us valuable science as we prepare to send astronauts to the Moon and later to Mars…The best of NASA is yet to come, and it is coming soon.”

4. Oversaw the arrival of the first American mission to an asteroid designed to return samples and New Horizon’s arrival at Ultima Thule, the farthest object ever explored.

image

The spacecraft OSIRIS-REx traveled 1.4 million miles (2.2 million kilometers) to arrive at the asteroid Bennu on Dec. 3. The first asteroid sample mission is helping scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-Rex has already revealed water locked inside the clays that make up the asteroid.

And on the early hours of New Year’s Day, 2019, our New Horizons spacecraft flew past Ultima Thule in Kuiper belt, a region of primordial objects that hold keys to understanding the origins of the solar system.

“In addition to being the first to explore Pluto, today New Horizons flew by the most distant object ever visited by a spacecraft and became the first to directly explore an object that holds remnants from the birth of our solar system,” said Administrator Bridenstine. “This is what leadership in space is all about.”

5. Directed the first major milestone in commercial crew flights with the successful Space X Demo-1 mission.

image

Demonstration Mission-1 (Demo-1) was an uncrewed flight test designed to demonstrate a new commercial capability developed under NASA’s Commercial Crew Program. The mission began March 2, when the Crew Dragon launched from NASA’s Kennedy Space Center in Florida and docked to the International Space Station for five days.

“Today’s successful re-entry and recovery of the Crew Dragon capsule after its first mission to the International Space Station marked another important milestone in the future of human spaceflight,” said Administrator Bridenstine. “I want to once again congratulate the NASA and SpaceX teams on an incredible week. Our Commercial Crew Program is one step closer to launching American astronauts on American rockets from American soil.”

6. Is currently working to meet the challenge of advancing human exploration of the lunar surface to 2024.

image

Administrator Bridenstine has accomplished a lot since he swore in one year ago — but the best is yet to come. On March 26, Vice President Mike Pence tasked our agency with returning American astronauts to the Moon by 2024 at the fifth meeting of the National Space Council. 

“It is the right time for this challenge, and I assured the Vice President that we, the people of NASA, are up to the challenge,” said Administrator Bridenstine. “There’s a lot of excitement about our plans and also a lot of hard work and challenges ahead, but I know the NASA workforce and our partners are up to it.”

Learn more about what’s still to come this year at NASA:

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Why Bennu? 10 Reasons

After traveling for two years and billions of kilometers from Earth, the OSIRIS-REx probe is only a few months away from its destination: the intriguing asteroid Bennu. When it arrives in December, OSIRIS-REx will embark on a nearly two-year investigation of this clump of rock, mapping its terrain and finding a safe and fruitful site from which to collect a sample.

The spacecraft will briefly touch Bennu’s surface around July 2020 to collect at least 60 grams (equal to about 30 sugar packets) of dirt and rocks. It might collect as much as 2,000 grams, which would be the largest sample by far gathered from a space object since the Apollo Moon landings. The spacecraft will then pack the sample into a capsule and travel back to Earth, dropping the capsule into Utah's west desert in 2023, where scientists will be waiting to collect it.

This years-long quest for knowledge thrusts Bennu into the center of one of the most ambitious space missions ever attempted. But the humble rock is but one of about 780,000 known asteroids in our solar system. So why did scientists pick Bennu for this momentous investigation? Here are 10 reasons:

1. It's close to Earth

image

Unlike most other asteroids that circle the Sun in the asteroid belt between Mars and Jupiter, Bennu’s orbit is close in proximity to Earth's, even crossing it. The asteroid makes its closest approach to Earth every 6 years. It also circles the Sun nearly in the same plane as Earth, which made it somewhat easier to achieve the high-energy task of launching the spacecraft out of Earth's plane and into Bennu's. Still, the launch required considerable power, so OSIRIS-REx used Earth’s gravity to boost itself into Bennu’s orbital plane when it passed our planet in September 2017.

2. It's the right size

image

Asteroids spin on their axes just like Earth does. Small ones, with diameters of 200 meters or less, often spin very fast, up to a few revolutions per minute. This rapid spinning makes it difficult for a spacecraft to match an asteroid's velocity in order to touch down and collect samples. Even worse, the quick spinning has flung loose rocks and soil, material known as "regolith" — the stuff OSIRIS-REx is looking to collect — off the surfaces of small asteroids. Bennu’s size, in contrast, makes it approachable and rich in regolith. It has a diameter of 492 meters, which is a bit larger than the height of the Empire State Building in New York City, and rotating once every 4.3 hours.

3. It's really old

image

Bennu is a leftover fragment from the tumultuous formation of the solar system. Some of the mineral fragments inside Bennu could be older than the solar system. These microscopic grains of dust could be the same ones that spewed from dying stars and eventually coalesced to make the Sun and its planets nearly 4.6 billion years ago. But pieces of asteroids, called meteorites, have been falling to Earth's surface since the planet formed. So why don't scientists just study those old space rocks? Because astronomers can't tell (with very few exceptions) what kind of objects these meteorites came from, which is important context. Furthermore, these stones, that survive the violent, fiery decent to our planet's surface, get contaminated when they land in the dirt, sand, or snow. Some even get hammered by the elements, like rain and snow, for hundreds or thousands of years. Such events change the chemistry of meteorites, obscuring their ancient records.

4. It's well preserved

image

Bennu, on the other hand, is a time capsule from the early solar system, having been preserved in the vacuum of space. Although scientists think it broke off a larger asteroid in the asteroid belt in a catastrophic collision between about 1 and 2 billion years ago, and hurtled through space until it got locked into an orbit near Earth's, they don’t expect that these events significantly altered it.

5. It might contain clues to the origin of life

image

Analyzing a sample from Bennu will help planetary scientists better understand the role asteroids may have played in delivering life-forming compounds to Earth. We know from having studied Bennu through Earth- and space-based telescopes that it is a carbonaceous, or carbon-rich, asteroid. Carbon is the hinge upon which organic molecules hang. Bennu is likely rich in organic molecules, which are made of chains of carbon bonded with atoms of oxygen, hydrogen, and other elements in a chemical recipe that makes all known living things. Besides carbon, Bennu also might have another component important to life: water, which is trapped in the minerals that make up the asteroid.

6. It contains valuable materials

image

Besides teaching us about our cosmic past, exploring Bennu close-up will help humans plan for the future. Asteroids are rich in natural resources, such as iron and aluminum, and precious metals, such as platinum. For this reason, some companies, and even countries, are building technologies that will one day allow us to extract those materials. More importantly, asteroids like Bennu are key to future, deep-space travel. If humans can learn how to extract the abundant hydrogen and oxygen from the water locked up in an asteroid’s minerals, they could make rocket fuel. Thus, asteroids could one day serve as fuel stations for robotic or human missions to Mars and beyond. Learning how to maneuver around an object like Bennu, and about its chemical and physical properties, will help future prospectors.

7. It will help us better understand other asteroids

image

Astronomers have studied Bennu from Earth since it was discovered in 1999. As a result, they think they know a lot about the asteroid's physical and chemical properties. Their knowledge is based not only on looking at the asteroid, but also studying meteorites found on Earth, and filling in gaps in observable knowledge with predictions derived from theoretical models. Thanks to the detailed information that will be gleaned from OSIRIS-REx, scientists now will be able to check whether their predictions about Bennu are correct. This work will help verify or refine telescopic observations and models that attempt to reveal the nature of other asteroids in our solar system.

8. It will help us better understand a quirky solar force ...

image

Astronomers have calculated that Bennu’s orbit has drifted about 280 meters (0.18 miles) per year toward the Sun since it was discovered. This could be because of a phenomenon called the Yarkovsky effect, a process whereby sunlight warms one side of a small, dark asteroid and then radiates as heat off the asteroid as it rotates. The heat energy thrusts an asteroid either away from the Sun, if it has a prograde spin like Earth, which means it spins in the same direction as its orbit, or toward the Sun in the case of Bennu, which spins in the opposite direction of its orbit. OSIRIS-REx will measure the Yarkovsky effect from close-up to help scientists predict the movement of Bennu and other asteroids. Already, measurements of how this force impacted Bennu over time have revealed that it likely pushed it to our corner of the solar system from the asteroid belt.

9. ... and to keep asteroids at bay

image

One reason scientists are eager to predict the directions asteroids are drifting is to know when they're coming too-close-for-comfort to Earth. By taking the Yarkovsky effect into account, they’ve estimated that Bennu could pass closer to Earth than the Moon is in 2135, and possibly even closer between 2175 and 2195. Although Bennu is unlikely to hit Earth at that time, our descendants can use the data from OSIRIS-REx to determine how best to deflect any threatening asteroids that are found, perhaps even by using the Yarkovsky effect to their advantage.

10. It's a gift that will keep on giving

Samples of Bennu will return to Earth on September 24, 2023. OSIRIS-REx scientists will study a quarter of the regolith. The rest will be made available to scientists around the globe, and also saved for those not yet born, using techniques not yet invented, to answer questions not yet asked.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Solar System: Things to Know This Week

See history in the making on September 22! That's the day OSIRIS-REx, the first U.S. mission to carry samples from an asteroid back to Earth, will make a close approach to Earth as it uses our planet's gravity to slingshot itself toward the asteroid Bennu. 

image

Over the course of several days, observatories and amateur astronomers will be able to spot the spacecraft. Below, 10 things to know about this incredible mission that will bring us the largest sample returned from space since the Apollo era.

1. Big Deal

image

OSIRIS-REx seeks answers to the questions that are central to the human experience: Where did we come from? What is our destiny? Asteroids, the leftover debris from the solar system formation process, can help us answer these questions and teach us about the history of the Sun and planets.

2. That's a Long Acronym

Yup. OSIRIS-REx stands for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer spacecraft. The gist: It will rendezvous with, study, and return a sample of the asteroid Bennu to Earth.

3. Lots of Instruments, Too

image

While all the acronyms for each instrument may be alphabet soup, each has a job/role to perform in order to complete the mission. Explore what each one will do in this interactive webpage. 

4. Nice to Meet You, Bennu

Scientists chose Bennu as the mission target because of its composition, size, and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.

5. Hard Knock Life

Bennu had a tough life in a rough neighborhood: the early solar system. It's an asteroid the size of a small mountain born from the rubble of a violent collision, hurled through space for millions of years and dismembered by the gravity of planets—but that's exactly what makes it a fascinating destination.

6. High Fives All Around

In 2018, OSIRIS-REx will approach Bennu and begin an intricate dance with the asteroid, mapping and studying Bennu in preparation for sample collection. In July 2020, the spacecraft will perform a daring maneuver in which its 11-foot arm will reach out for a five-second "high-five" to stir up surface material, collecting at least 2 ounces (60 grams) of small rocks and dust into a sample return capsule.

7. Home Sweet Home

image

OSIRIS-REx launched on September 8, 2016 from Cape Canaveral, Florida on an Atlas V rocket. In March 2021, the window for departure from the asteroid will open and OSIRIS-REx will begin its return journey to Earth, arriving two-and-a-half years later in September 2023.

8. Precious Cargo

image

The sample will head to Earth inside of a return capsule with a heat shield and parachutes that will separate from the spacecraft once it enters the Earth's atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range. Once it arrives, it will be transported to NASA's Johnson Space Center in Houston for examination. For two years after the sample return (from late 2023-2025) the science team will catalog the sample and conduct the analysis needed to meet the mission science goals. NASA will preserve at least 75% of the sample at NASA's Johnson Space Flight Center in Houston for further research by scientists worldwide, including future generations of scientists.

9. Knowledge Is Power

image

Analyzing the sample will help scientists understand the early solar system, as well as the hazards and resources of near-Earth space. Asteroids are remnants of the building blocks that formed the planets and enabled life. Those like Bennu contain natural resources such as water, organics and metals. Future space exploration and economic development may rely on asteroids for these materials.

10. Hitch a Ride

Journey with OSIRIS-REx as it launches, cruises, and arrives to Bennu in this interactive timeline.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

It’s International Asteroid Day!

There are more than 700,000 known asteroids, but how much do you know about these rocky remnants left over from the birth of our solar system 4.6 billion years ago? 

image

Today, June 30 is International Asteroid Day. Here are some things to know about our fascinating space rubble.

1. A Place in Space 

Asteroids—named by British astronomer William Herschel from the Greek expression meaning "star-like"—are rocky, airless worlds that are too small to be called planets. But what they might lack in size they certainly make up for in number: An estimated 1.1 to 1.9 million asteroids larger than 1 kilometer are in the Main Belt between the orbits of Mars and Jupiter. And there are millions more that are smaller in size. Asteroids range in size from Vesta—the largest at about 329 miles (529 kilometers) wide—to bodies that are just a few feet across.

image

2. What Lies Beneath 

Asteroids are generally categorized into three types: carbon-rich, silicate, or metallic, or some combination of the three. Why the different types? It all comes down to how far from the sun they formed. Some experienced high temperatures and partly melted, with iron sinking to the center and volcanic lava forced to the surface. The asteroid Vesta is one example we know of today.

3. Small Overall 

If all of the asteroids were combined into a ball, they would still be much smaller than the Earth's moon.

4. Except for a Big One

In 1801, Giuseppe Piazzi discovered the first and then-largest asteroid, Ceres, orbiting between Mars and Jupiter. Ceres is so large that it encompasses about one-fourth of the estimated total mass of all the asteroids in the asteroid belt. In 2006, its classification changed from asteroid to  as a dwarf planet.

image

5. Mission to a Metal World 

NASA's Psyche mission will launch in 2022 to explore an all-metal asteroid—what could be the core of an early planet—for the very first time. And in October 2021, the Lucy mission will be the first to visit Jupiter's swarms of Trojan asteroids.

image

6. Near-Earth Asteroids

The term 'near' in near-Earth asteroid is actually a misnomer; most of these bodies do not come close to Earth at all. By definition, a near-Earth asteroid is an asteroid that comes within 28 million miles (44 million km) of Earth's orbit. As of June 19, 2017, there are 16,209 known near-Earth asteroids, with 1,803 classified as potentially hazardous asteroids (those that could someday pose a threat to Earth).

7. Comin' in Hot 

About once a year, a car-sized asteroid hits Earth's atmosphere, creates an impressive fireball, and burns up before reaching the surface.

8. But We're Keeping an Eye Out

Ground-based observatories and facilities such as Pan-STARRS, the Catalina Sky Survey, and ATLAS are constantly on the hunt to detect near-Earth asteroids. NASA also has a small infrared observatory in orbit about the Earth: NEOWISE. In addition to detecting asteroids and comets, NEOWISE also characterizes these small bodies.

image

9. Buddy System

Roughly one-sixth of the asteroid population have a small companion moon (some even have two moons). The first discovery of an asteroid-moon system was of asteroid Ida and its moon Dactyl in 1993.

10. Earthly Visitors 

image

Several NASA space missions have flown to and observed asteroids. The NEAR Shoemaker mission landed on asteroid Eros in 2001 and NASA's Dawn mission was the first mission to orbit an asteroid in 2011. In 2005, the Japanese spacecraft Hayabusa landed on asteroid Itokawa. Currently, NASA's OSIRIS-REx is en route to a near-Earth asteroid called Bennu; it will bring a small sample back to Earth for study.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

A Journey of Eight Years

We’re taking time to highlight our progress and accomplishments over the past 8 years. Join our historical journey!

Obama Visit to NASA in 2010 

image

President Barack Obama visited our Kennedy Space Center in Florida to deliver remarks on the bold new course the administration is charting for America’s space program. During a speech at the center, President Obama said, “I believe we can send humans to orbit Mars and return them safely to Earth. And a landing on Mars will follow. And I expect to be around to see it.” R  

Commercial Crew

image

Our Commercial Crew and Cargo Program is investing financial and technical resources to stimulate efforts within the private sector to develop safe, reliable and cost-effective space transportation systems. This program has allowed us to continue to reach low-Earth orbit, even after the retirement of the Space Shuttle Program. In the coming years, we will once again launch U.S. astronauts from American soil to the International Space Station through this commercial partnership.  

Revamping KSC: Vehicle Assembly Building

image

Our Vehicle Assembly Building (VAB) at Kennedy Space Center served through the Apollo and Space Shuttle Programs, and is now undergoing renovations to accommodate future launch vehicles…like our Space Launch System (SLS) rocket that will carry astronauts to deep space destinations, like Mars. Already, shuttle-era work platforms have been removed from the VAB to make way for our advanced heavy-lift launch vehicle, SLS.  

Revamping KSC: Pad 39B

image

For the first time since our Apollo-era rockets and space shuttles lifted off on missions from Launch Complex 39 at our Kennedy Space Center in Florida, one of the launch pads is undergoing extensive upgrades to support our 21st century space launch complex. At launch pad B, workers are making upgrades to support our Space Launch System (SLS) rocket and a variety of other commercial launch vehicles. .

Commercial Resupply Program

image

Our commercial partnerships with companies like SpaceX and Orbital ATK are allowing us to find new ways to resupply the International Space Station. Orbital ATK’s Cygnus cargo spacecraft is shown being captured using the Station’s Canadarm2 robotic arm. Packed with more than 5,100 pounds of cargo and research equipment, the vehicle made Orbital ATK's fifth commercial resupply flight to the station in October 2016.  

Pluto Flyby

image

After a seven-year journey, our New Horizons spacecraft arrived at dwarf planet Pluto. It captured this high-resolution enhanced color view of the planet on July 14, 2015. The image combines blue, red and infrared images taken by the craft’s imaging camera. Pluto’s surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many land forms have their own distinct colors, which tell a complex geological and climatological story.   

Juno at Jupiter

image

Juno’s 2011 launch brought it into orbit around Jupiter. This composite image depicts Jupiter’s cloud formations as seen through the eyes of Juno’s Microwave Radiometer (MWR) instrument as compared to the top layer, a Cassini Imaging Science Subsystem image of the planet. The MWR can see several hundred miles (kilometers) into Jupiter’s atmosphere with its largest antenna. The belts and bands visible on the surface are also visible in modified form in each layer below.  

Orion EFT-1

image

As we strived to make deep-space missions a reality, on Dec. 5, 2014, a Delta IV Heavy rocket lifted off from Cape Canaveral carrying our Orion spacecraft on an unpiloted flight test to Earth orbit. During the two-orbit, four-and-a-half hour mission, engineers evaluated the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.  

 Building of SLS

image

Meet the Space Launch System, our latest rocket system and see how it stacks up (no pun intended) to earlier generations of launch vehicles. While we engaged commercial partners to help us reach low-Earth orbit, we also were able to focus on deep-space exploration. This resulted in the creation of SLS, the world’s most powerful rocket and the one that will carry humans to deep-space destinations, like Mars.  

Small Satellite Technology

image

Our latest generation of small satellite technology represents a new way of advancing scientific research and reducing costs. These small sats are part of a technology demonstration that were deployed from the International Space Station in December 2016.   

Technology Development Organization

A Journey Of Eight Years

In 2013, we created a standalone technology development organization at NASA. Why? This new organization was an outgrowth of President Obama’s recognition of the critical role that space technology and innovation will play in enabling both future space missions and bettering life on Earth. The President’s most recent budget request included $4 million per year for our Centennial Challenges prizes. This program seeks innovations from diverse and non-traditional sources and competitors are not supported by government funding. Awards are only made to successful teams when the challenges are met. Throughout this administration (2009 – 2016), more than $6.5 million has been awarded to winners. 

Spinoffs

image

Did you know that many technologies originally designed for space exploration are now being used by the general public? Yes, there’s space in your life! We have a long history of transferring technology to the private sector, things we like to call NASA Spinoffs. From enriched baby formula, to digital camera sensors…you may be surprised where this technology came from. 

 Space Station Extended to 2024

image

In 2014, the Obama Administration announced that the United States would support the extension of the International Space Station to at least 2024. This gave the station a decade to continue its already fruitful microgravity research mission. This offered scientists and engineers the time they need to ensure the future of exploration, scientific discoveries and economic development.  

Year in Space Mission

image

Former NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko spent a year in space to help us understand the impacts of long-duration spaceflight on the human body. The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts that will one day travel to Mars. Scott Kelly was a particularly interesting candidate for the job, as he has a twin brother. While Scott spent a year on the International Space Station, his brother Mark spent the year on Earth. Comparing test results from both subjects will provide an even deeper understanding of the human body and how it reacts to the space environment.  

EPIC Earth Images

image

From one MILLION miles away, our EPIC camera on the Deep Space Climate Observatory (DSCOVR) satellite returned its first view of the entire sunlit side of Earth in 2015. Because of this spacecraft, you can now see a daily series of images of our home planet! These images are available 12 to 36 hours after they are acquired. 

James Webb Space Telescope

image

The James Webb Space Telescope represents a giant leap forward in our quest to understand the universe and our origins.  The successor to the Hubble Space Telescope, JWST is designed to examine every phase of cosmic history: from the first luminous glows after the Big Bang to the formation of galaxies, stars, and planets to the evolution of our own solar system. More: 

Green Aviation

image

Our commitment to advancing aeronautics has led to developments in today’s aviation that have made air travel safer than ever. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Streamlined aircraft bodies, quieter jet engines, techniques for preventing icing, drag-reducing winglets, lightweight composite structures, software tools to improve the flow of tens of thousands of aircraft through the sky, and so much more are an everyday part of flying thanks to our research that traces its origins back to the earliest days of aviation. Our green aviation technologies are dramatically reducing the environmental impact of aviation and improving its efficiency while maintaining safety in more crowded skies, and paving the way for revolutionary aircraft shapes and propulsion. 

X-Planes

image

History is about to repeat itself as the Quiet Supersonic Technology, or QueSST, concept  begins its design phase to become one of the newest generation of X-planes. Over the past seven decades, our nation’s best minds in aviation designed, built and flew a series of experimental airplanes to test the latest fanciful and practical ideas related to flight. Known as X-planes, we are again are preparing to put in the sky an array of new experimental aircraft, each intended to carry on the legacy of demonstrating advanced technologies that will push back the frontiers of aviation.  

Drones

image

Blazing the trail for safely integrating drones into the national airspace, we have been testing and researching uncrewed aircraft. The most recent “out of sight” tests are helping us solve the challenge of drones flying beyond the visual line of sight of their human operators without endangering other aircraft. 

Solar Dynamics Observatory

image

Our Solar Dynamics Observatory, which launched in 2010, observes the sun in unparalleled detail and is yet another mission designed to understand the space in which we live. In this image, the sun, our system’s only star seems to be sending us a message. A pair of giant filaments on the face of the sun form what appears to be an enormous arrow pointing to the right. If straightened out, each filament would be about as long as the sun’s diameter—1 million miles long. Such filaments are cooler clouds of solar material suspended above the sun's surface by powerful magnetic forces. Filaments can float for days without much change, though they can also erupt, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME.  

Curiosity Launch and Landing

image

There are selfies and there are selfies—from a world more than 33 million miles away. When the Curiosity Rover launched on Nov. 6, 2011, to begin a 10-month journey to the Red Planet, who knew it would be so photogenic. Not only has Curiosity sent back beauty shots of itself, its imagery has increased our knowledge of Mars manyfold. But it’s not just a camera; onboard are an array of scientific instruments designed to analyze the Red Planet’s soil, rocks and chemical composition. 

Astronaut Applications

image

On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18 with a record turnout! We received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpassed the more than 6,100 received in 2012, and the previous record of 8,000 applicants in 1978.  

OSIRIS-REx

image

Asteroids are a part of our solar system and in our quest to learn more about their origins, we sent the OSIRIS-Rex, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, to rendezvous with comet Bennu and return a sample of the comet to scientists here on Earth. Along the way, the mission will be multitasking during its two-year outbound cruise to search for elusive “Trojan” asteroids. Trojans are asteroids that are constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. 

 Habitable Zone Planets

image

In December 1995, the first exoplanet (a planet outside our solar system) was found. Since then, our Kepler mission has surveyed the Milky Way to verify 2,000+ exoplanets. On July 23, 2015, the Kepler mission confirmed the discovery of the first Earth-sized planet in the habitable zone. Not only that, but the planet orbits a sun very much like our own. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Learn more about our Deep Space Network, where to watch the Ursid meteor shower, Cassini’s ring-grazing at Saturn and more.

image

1. A Deep Space Anniversary

On Dec. 24, 1963, the Jet Propulsion Laboratory's Deep Space Information Facility was renamed the Deep Space Network. And, it’s been humanity's ear to the skies ever since.

+ History of the Deep Space Network 

image

2. Ursid Meteor Shower 

The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on December 21 until about 1a.m. on December 22, before the moon rises.

image

3. At Saturn, the Ring-Grazing Continues

Our Cassini spacecraft has completed several orbits that take it just outside Saturn’s famous rings. The first ring-grazing orbit began on November 30. The spacecraft will repeat this feat 20 times, with only about a week between each ring-plane crossing.

+ Learn more

Solar System: Things To Know This Week

4. Preparing for the 2017 Total Solar Eclipse

Next year North America will see one of the most rare and spectacular of all sky events. Learn how to prepare.

+ 2017 Solar Eclipse Toolkit

image

5. Searching for Rare Asteroids

Our first mission to return an asteroid sample to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On February 9-20, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) will activate its onboard camera suite and begin its search for elusive “Trojan,” asteroids, constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Life Among the Stars

Let us lead you on a journey of our solar system. Here are some things to know this week:

1. Amateur" Means "One Who Loves"

image

We release thousands of breathtaking solar system images every year and not all of them are the exclusive result of work by scientists. Amateur image processors around the world take raw data from deep space missions and turn it into striking visuals.

Amateur images from Cassini

Get current unprocessed images 

2. Prepare to Weigh Anchor

image

OSIRIS-REx, our first spacecraft destined to rendezvous with, study and return a sample of an asteroid, will launch. The mission to asteroid Bennu will yield the largest sample returned from space since the Apollo era. Tune in four our media briefing about OSIRIS-REx for 2 p.m. EDT on Aug. 17.

Learn more and tune in.

3. Out for a Walk

image

Join us for live coverage on Aug. 19 as our astronauts Jeff Williams and Kate Rubins install a new gateway for American commercial crew spacecraft at the International Space Station.

Live coverage of the spacewalk.

4. The Weather Out There

image

Aug. 17 marks 50 years since the launch of Pioneer 7, a robotic spacecraft that lived up to its name by exploring the solar magnetic field, the solar wind and cosmic rays in deep space. Along with Pioneers 6, 8, and 9, the spacecraft formed a ring of solar weather stations spaced  along Earth's orbit. Measurements by the craft were used to predict solar storms for organizations ranging from commercial airlines to power companies.

Learn more.

5. Destination: The Red Planet

image

The European Space Agency's ExoMars/Trace Gas Orbiter mission to Mars performed a critical engine burn to keep it on course. The maneuver was a success, and ExoMars remains on target for an October arrival.

Learn more.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags