When a spacecraft built for humans ventures into deep space, it requires an array of features to keep it and a crew inside safe. Both distance and duration demand that spacecraft must have systems that can reliably operate far from home, be capable of keeping astronauts alive in case of emergencies and still be light enough that a rocket can launch it.
Missions near the Moon will start when the Orion spacecraft leaves Earth atop the world’s most powerful rocket, the Space Launch System. After launch from Kennedy Space Center in Florida, Orion will travel beyond the Moon to a distance more than 1,000 times farther than where the International Space Station flies in low-Earth orbit, and farther than any spacecraft built for humans has ever ventured. To accomplish this feat, Orion has built-in technologies that enable the crew and spacecraft to explore far into the solar system. Let’s check out the top five:
As humans travel farther from Earth for longer missions, the systems that keep them alive must be highly reliable while taking up minimal mass and volume. Orion will be equipped with advanced environmental control and life support systems designed for the demands of a deep space mission. A high-tech system already being tested aboard the space station will remove carbon dioxide (CO2) and humidity from inside Orion. The efficient system replaces many chemical canisters that would consume up to 10 percent of crew livable area. To save additional space, Orion will also have a new compact toilet, smaller than the one on the space station.
Highly reliable systems are critically important when distant crew will not have the benefit of frequent resupply shipments to bring spare parts from Earth. Even small systems have to function reliably to support life in space, from a working toilet to an automated fire suppression system or exercise equipment that helps astronauts stay in shape to counteract the zero-gravity environment. Distance from home also demands that Orion have spacesuits capable of keeping astronaut alive for six days in the event of cabin depressurization to support a long trip home.
The farther into space a vehicle ventures, the more capable its propulsion systems need to be in order to maintain its course on the journey with precision and ensure its crew can get home.
Orion’s highly capable service module serves as the powerhouse for the spacecraft and provides propulsion capabilities that enable it to go around the Moon and back on exploration missions. The service module has 33 engines of various sizes. The main engine will provide major in-space maneuvering capabilities throughout the mission such as inserting Orion into lunar orbit and firing powerfully enough to exit orbit for a return trip to Earth. The other 32 engines are used to steer and control Orion on orbit.
In part due to its propulsion capabilities, including tanks that can hold nearly 2,000 gallons of propellant and a back up for the main engine in the event of a failure, Orion’s service module is equipped to handle the rigors of travel for missions that are both far and long. It has the ability to bring the crew home in a variety of emergency situations.
Going to the Moon is no easy task, and it’s only half the journey. The farther a spacecraft travels in space, the more heat it will generate as it returns to Earth. Getting back safely requires technologies that can help a spacecraft endure speeds 30 times the speed of sound and heat twice as hot as molten lava or half as hot as the sun.
When Orion returns from the Moon it will be traveling nearly 25,000 mph, a speed that could cover the distance from Los Angeles to New York City in six minutes. Its advanced heat shield, made with a material called AVCOAT, is designed to wear away as it heats up. Orion’s heat shield is the largest of its kind ever built and will help the spacecraft withstand temperatures around 5,000 degrees Fahrenheit during reentry though Earth’s atmosphere.
Before reentry, Orion also will endure a 700-degree temperature range from about minus 150 to 550 degrees Fahrenheit. Orion’s highly capable thermal protection system, paired with thermal controls, will protect it during periods of direct sunlight and pitch black darkness while its crews comfortably enjoy a safe and stable interior temperature of about 77 degrees Fahrenheit.
As a spacecraft travels on missions beyond the protection of Earth’s magnetic field, it will be exposed to a harsher radiation environment than in low-Earth orbit with greater amounts of radiation from charged particles and solar storms. This kind of radiation can cause disruptions to critical computers, avionics and other equipment. Humans exposed to large amounts of radiation can experience both acute and chronic health problems ranging from near-term radiation sickness to the potential of developing cancer in the long-term.
Orion was designed from the start with built in system-level features to ensure reliability of essential elements of the spacecraft during potential radiation events. For example, Orion is equipped with four identical computers that each are self-checking, plus an entirely different backup computer, to ensure it can still send commands in the event of a disruption. Engineers have tested parts and systems to a high standard to ensure that all critical systems remain operable even under extreme circumstances.
Orion also has a makeshift storm shelter below the main deck of the crew module. In the event of a solar radiation event, we developed plans for crew on board to create a temporary shelter inside using materials on board. A variety of radiation sensors will also be on the spacecraft to help scientists better understand the radiation environment far away from Earth. One investigation, called AstroRad, will fly on Exploration Mission-1 and test an experimental vest that has the potential to help shield vital organs and decrease exposure from solar particle events.
Spacecraft venturing far from home go beyond the Global Positioning System (GPS) in space and above communication satellites in Earth orbit. To talk with mission control in Houston, Orion’s communication and navigation systems will switch from our Tracking and Data Relay Satellites (TDRS) system used by the International Space Station, and communicate through the Deep Space Network.
Orion is equipped with backup communication and navigation systems to help the spacecraft stay in contact with the ground and orient itself if its primary systems fail. The backup navigation system, a relatively new technology called optical navigation, uses a camera to take pictures of the Earth, Moon and stars and autonomously triangulate Orion’s position from the photos. Its backup emergency communications system doesn’t use the primary system or antennae for high-rate data transfer.
Keep up with all the latest news on our newest, state-of-the art spacecraft by following NASA Orion on Facebook and Twitter.
More on our Moon to Mars plans, here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Aug. 21, 2017, a total solar eclipse passed over North America. People throughout the continent captured incredible images of this celestial phenomenon. We and our partner agencies had a unique vantage point on the eclipse from space. Here are a few highlights from our fleet of satellites that observe the Sun, the Moon and Earth.
Our Solar Dynamics Observatory, or SDO, which watches the Sun nearly 24/7 from its orbit 3,000 miles above Earth, saw a partial eclipse on Aug. 21.
SDO sees the Moon cross in front of the Sun several times a year. However, these lunar transits don’t usually correspond to an eclipse here on Earth, and an eclipse on the ground doesn’t guarantee that SDO will see anything out of the ordinary. In this case, on Aug. 21, SDO did see the Moon briefly pass in front of the Sun at the same time that the Moon’s shadow passed over the eastern United States. From its view in space, SDO only saw 14 percent of the Sun blocked by the Moon, while most U.S. residents saw 60 percent blockage or more.
Six people saw the eclipse from the International Space Station. Viewing the eclipse from orbit were NASA’s Randy Bresnik, Jack Fischer and Peggy Whitson, the European Space Agency’s Paolo Nespoli, and Roscosmos’ Commander Fyodor Yurchikhin and Sergey Ryazanskiy. The space station crossed the path of the eclipse three times as it orbited above the continental United States at an altitude of 250 miles.
From a million miles out in space, our Earth Polychromatic Imaging Camera, or EPIC, instrument captured 12 natural color images of the Moon’s shadow crossing over North America. EPIC is aboard NOAA’s Deep Space Climate Observatory, or DSCOVR, where it photographs the full sunlit side of Earth every day, giving it a unique view of the shadow from total solar eclipses. EPIC normally takes about 20 to 22 images of Earth per day, so this animation appears to speed up the progression of the eclipse.
A ground-based image of the total solar eclipse – which looks like a gray ring – is superimposed over a red-toned image of the Sun’s atmosphere, called the corona. This view of the corona was captured by the European Space Agency and our Solar and Heliospheric Observatory, or SOHO. At center is an orange-toned image of the Sun’s surface as seen by our Solar Dynamics Observatory in extreme ultraviolet wavelengths of light.
During a total solar eclipse, ground-based telescopes can observe the lowest part of the solar corona in a way that can’t be done at any other time, as the Sun’s dim corona is normally obscured by the Sun’s bright light. The structure in the ground-based corona image — defined by giant magnetic fields sweeping out from the Sun’s surface — can clearly be seen extending into the outer image from the space-based telescope. The more scientists understand about the lower corona, the more they can understand what causes the constant outward stream of material called the solar wind, as well as occasional giant eruptions called coronal mass ejections.
As millions of Americans watched the total solar eclipse that crossed the continental United States, the international Hinode solar observation satellite captured its own images of the awe-inspiring natural phenomenon. The images were taken with Hinode's X-ray telescope, or XRT, as it flew above the Pacific Ocean, off the west coast of the United States, at an altitude of approximately 422 miles. Hinode is a joint endeavor by the Japan Aerospace Exploration Agency, the National Astronomical Observatory of Japan, the European Space Agency, the United Kingdom Space Agency and NASA.
During the total solar eclipse our Lunar Reconnaissance Orbiter, or LRO, in orbit around the Moon, turned one of its instruments towards Earth to capture an image of the Moon’s shadow over a large region of the United States.
As LRO crossed the lunar south pole heading north at 3,579 mph, the shadow of the Moon was racing across the United States at 1,500 mph. A few minutes later, LRO began a slow 180-degree turn to look back at Earth, capturing an image of the eclipse very near the location where totality lasted the longest. The spacecraft’s Narrow Angle Camera began scanning Earth at 2:25:30 p.m. EDT and completed the image 18 seconds later.
Sensors on the polar-orbiting Terra and Suomi NPP satellites gathered data and imagery in swaths thousands of miles wide. The Moderate Resolution Imaging Spectroradiometer, or MODIS, sensor on Terra and Visible Infrared Imaging Radiometer Suite, or VIIRS, on Suomi NPP captured the data used to make this animation that alternates between two mosaics. Each mosaic is made with data from different overpasses that was collected at different times.
This full-disk geocolor image from NOAA/NASA’s GOES-16 shows the shadow of the Moon covering a large portion of the northwestern U.S. during the eclipse.
Our Interface Region Imaging Spectrograph, or IRIS, mission captured this view of the Moon passing in front of the Sun on Aug. 21.
Check out nasa.gov/eclipse to learn more about the Aug. 21, 2017, eclipse along with future eclipses, and follow us on Twitter for more satellite images like these: @NASASun, @NASAMoon, and @NASAEarth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Is your health affected from being in outer space?
The International Space Station is a perfect environment for creating protein crystal structures for research.
In microgravity, protein molecules form more orderly, high-quality crystals. Studying these structures helps scientists understand their function and contributes to development of more effective treatments for diseases.
Experiments often need more than one try to generate ideal crystals, though. Researchers may have to return samples to Earth for analysis and then try again on a later mission on the space station.
Scientists are testing new methods of growing crystals that allow crew members to observe imperfections, make real-time adjustments, and try growing them again right away. This dramatically reduces the time and cost of conducting experiments aboard the space station and opens up the orbiting lab to more users. More efficient use of time and resources can produce research results in less time and lead to development of better drugs sooner.
Learn more @ISS_Research!
The work we do, and will continue in 2016, helps the United States maintain its world leadership in space exploration and scientific discovery. Here’s an overview of what we have planned for the coming year:
Our Journey to Mars
We’re developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Mars is a rich destination for scientific discovery and robotic and human exploration as we expand our presence into the solar system. Its formation and evolution are comparable to Earth, helping us learn more about our own planet’s history and future.
Work and Research on the International Space Station
The International Space Station is a unique place – a convergence of science, technology and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. In 2016, we will continue our groundbreaking research on the orbiting laboratory.
Returning Human Spaceflight Launches to American Soil
Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities of discovery on the orbiting laboratory.
Studying Our Earth Right Now
We use the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. In 2016, we will continue to monitor Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns.
Fostering Groundbreaking Technology Development
Sustained investments in NASA technology advances our space exploration, science and aeronautics capabilities. Our technology development also supports the nation's innovation economy by creating solutions that generate tangible benefits for life on earth. In 2016, we will continue to invest in the future of innovation.
Breakthroughs in Aeronautics
Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport all those passengers to their destinations. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. In 2016, we will continue making these breakthroughs in aeronautics.
Discoveries in Our Solar System and Beyond
This year we will continue exploring our solar system and beyond to unravel the mysteries of our universe. We are looking to answer key questions about our home planet, neighboring planets in our solar system and more!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The James Webb Space Telescope – our next infrared space observatory – will not only change what we know, but also how we think about the night sky and our place in the cosmos. This epic mission to travel back in time to look back at the first stars and galaxies has inspired artists from around the world to create art inspired by the mission.
Image Credit: Anri Demchenko
It’s been exactly two years since the opening of the first James Webb Space Telescope Art + Science exhibit at the NASA Goddard Visitor Center. The exhibit was full of pieces created by artists who had the special opportunity to visit Goddard and view the telescope in person in late 2016.
Online Submission Image Credit: Tina Saramaga
Since the success of the event and exhibit, the Webb project has asked its followers to share any art they have created that was inspired by the mission. They have received over 125 submissions and counting!
Image Credit: Enrico Novelli
Online Submission Image Credit: Unni Isaksen
A selection of these submissions will be on display at NASA Goddard’s Visitor Center from now until at least the end of April 2019. The artists represented in this exhibit come not just from around the country, but from around the world, showing how art and science together can bring a love of space down to Earth.
More information about each piece in the exhibit can be found in our web gallery. Want to participate and share your own art? Tag your original art, inspired by the James Webb Space Telescope, on Twitter or Instagram with #JWSTArt, or email us through our website! For more info and rules, see: http://nasa.gov/jwstart.
Webb is the work of hands and minds from across the planet. We’re leading this international project with our partners from the European Space Agency (ESA) and the Canadian Space Agency (CSA), and we’re all looking forward to its launch in 2021. Once in space, Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Are you active on social media? Want to go behind-the-scenes at NASA and meet our scientists, engineers, astronauts and managers? Want to see and feel a rocket launch in-person? Then you would love our NASA Social events!
A NASA Social is a program that provides opportunities for our social media followers (like you!) to learn and share information about our missions, people and programs. Formerly known as NASA Tweetups, these socials include both special in-person events and social media credentials for people who share the news in a significant way. To date, this program has brought thousands of people together for unique social media experiences of exploration and discovery.
NASA Socials range from two hours to two days in length and include a “meet and greet” session to allow participants to mingle with fellow socialites and the people behind our social media accounts. The participants are selected from those who register their interest for the event on the web.
Do you need to have a social media account to register for a NASA Social?
Yes. The socials are designed for social media users who follow @NASA on a variety of platforms. The goal of NASA Socials is to allow people who regularly interact with each other via these platforms to meet in person and discuss one of their favorite subjects: NASA!
What types of events have we hosted in the past? Take a look:
Participants for a NASA Social surrounding the launch of a SpaceX cargo vehicle to the International Space Station met with former Deputy Administrator Lori Garver underneath the engines of the Saturn V rocket.
A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station.
Juno launch Tweetup participants pose for a group photo with NASA Administrator Charles Bolden with the Vehicle Assembly Building (VAB) in the background at Kennedy Space Center.
And of course, some of our NASA Socials culminate with a rocket launch! You can experience one in-person. Apply to attend a once in a lifetime experience.
For more information about NASA Social events, and to see upcoming opportunities, visit: http://www.nasa.gov/social
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What kind of things are you looking forward to as NASA gets closer to the Artemis and Gateway missions? Do you plan to be a part of them?
In schools across the country, many students just finished final exams. Now, part of the world’s most powerful rocket, the Space Launch System (SLS), is about to feel the pressure of testing time. The first SLS engine section has been moving slowly upriver from Michoud Assembly Facility near New Orleans, but once the barge Pegasus docks at our Marshall Space Flight Center in Huntsville, Alabama, the real strength test for the engine section will get started.
The engine section is the first of four of the major parts of the core stage that are being tested to make sure SLS is ready for the challenges of spaceflight.
The engine section is located at the bottom of the rocket. It has a couple of important jobs. It holds the four RS-25 liquid propellant engines, and it serves as one of two attach points for each of the twin solid propellant boosters. This first engine section will be used only for ground testing.
Of all the major parts of the rocket, the engine section gets perhaps the roughest workout during launch. Millions of pounds of core stage are pushing down, while the engines are pushing up with millions of pounds of thrust, and the boosters are tugging at it from both sides. That’s a lot of stress. Maybe that’s why there’s a saying in the rocket business: “Test like you fly, and fly like you test.”
After it was welded at Michoud, technicians installed the thrust structure, engine supports and other internal equipment and loaded it aboard the Pegasus for shipment to Marshall.
Once used to transport space shuttle external tanks, Pegasus was modified for the longer SLS core stage by removing 115 feet out of the middle of the barge and added a new 165-foot section with a reinforced main deck. Now as long as a football field, Pegasus – with the help of two tugboats – will transport core stage test articles to Marshall Space Flight Center as well as completed core stages to Stennis Space Center in Mississippi for test firing and then to Kennedy Space Center for launch.
The test article has no engines, cabling, or computers, but it will replicate all the structures that will undergo the extreme physical forces of launch. The test article is more than 30 feet tall, and weighs about 70,000 pounds. About 3,200 sensors attached to the test article will measure the stress during 59 separate tests. Flight-like physical forces will be applied through simulators and adaptors standing in for the liquid hydrogen tank and RS-25 engines.
The test fixture that will surround and secure the engine section weighs about 1.5 million pounds and is taller than a 5-story building. Fifty-five big pistons called “load lines” will impart more than 4.5 million pounds of force vertically and more than 428,000 pounds from the side.
The engineers and their computer design tools say the engine section can handle the stress. It’s the test team’s job prove that it can.
For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/
Recent University of Idaho graduate Hannah Johnson and NASA’s STEM on Station activity Manager Becky Kamas answered your questions about our Student Payload Opportunity with Citizen Science (SPOCS).
Checkout their full Answer Time.
SPOCS helps fund student experiments and launches them to the International Space Station to conduct research. Learn more about SPOCS and this year’s student teams building experiments for space HERE.
If today’s Answer Time got you fired up, HERE are other ways you can get involved with NASA as a student. We have contests, challenges, internships, games, and more!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Do you know what the structural backbone is of our new rocket, the Space Launch System? If you answered the core stage, give yourself a double thumbs up! Or better yet, have astronaut Scott Kelly do it!
We’re on a journey to Mars. For bolder missions to deep space, we need a big, powerful rocket like SLS to take astronauts in the Orion spacecraft to places we've never gone before. The core stage is a major part of that story, as it will house the fuel and avionics systems that will power and guide the rocket to those new destinations beyond Earth’s orbit. Here's how:
It's Big, and It's Fast.
The core stage will be the largest rocket stage ever built and is under construction right now at our Michoud Assembly Facility in New Orleans. It will stand at 212 feet tall and weigh more than 2.3 million pounds with propellant. That propellant is cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. In just 8.5 minutes, the core stage will reach Mach 23, which is faster than 17,000 mph!
It's Smart.
Similar to a car, the rocket needs all the equipment necessary for the "drive" to deep space. The core stage will house the vehicle’s avionics, including flight computers, instrumentation, batteries, power handling, sensors and other electronics. That's a lot of brain power behind those orange-clad aluminum walls. *Fun fact: Orange is the color of the rocket's insulation.
It's a Five-Parter.
The core stage is made up of five parts. Starting from the bottom is the engine section, which will deliver the propellants to the four RS-25 engines. It also will house avionics to steer the engines, and be an attachment point for the two, five-segment solid rocket boosters. The engine section for the first SLS flight has completed welding and is in the final phases of manufacturing at Michoud.
Next up is the liquid hydrogen tank. It will hold 537,000 gallons of liquid hydrogen cooled to -423 degrees Fahrenheit. Right now, engineers are building the tank for the first SLS mission. It will look very similar to the qualification test article that just finished welding at Michoud. That's an impressive piece of rocket hardware!
The next part of the core stage is the intertank, which will join the propellant tanks. It has to be super strong because it is the attachment point for the boosters and absorbs most of the force when they fire 3.6 million pounds of thrust each. It's also a "think tank" of sorts, as it holds the SLS avionics and electronics. The intertank is even getting its own test structure at our Marshall Space Flight Center in Huntsville, Alabama.
And then there's the liquid oxygen tank. It will store 196,000 gallons of liquid oxygen cooled to -297 degrees. If you haven't done the math, that's 733,000 gallons of propellant for both tanks, which is enough to fill 63 large tanker trucks. Toot, toot. Beep, beep! A confidence version of the tank has finished welding at Michoud, and it's impressive. Just ask this guy.
The topper of the core stage is the forward skirt. Funny name, but serious hardware. It's home to the flight computers, cameras and avionics. The avionics system is being tested right now in a half-ring structure at the Marshall Center.
You can click here for more SLS core stage facts. We'll continue building, and see you at the launch pad for the first flight of SLS with Orion in 2018!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts