TumbleCatch

Your gateway to endless inspiration

Spacestation - Blog Posts

7 years ago

Spacewalk Recap Told in GIFs

Friday, Oct. 20, NASA astronauts Randy Bresnik and Joe Acaba ventured outside the International Space Station for a 6 hour and 49 minute spacewalk. Just like you make improvements to your home on Earth, astronauts living in space periodically go outside the space station to make updates on their orbiting home.

During this spacewalk, they did a lot! Here’s a recap of their day told in GIFs…

All spacewalks begin inside the space station. Astronauts Paolo Nespoli and Mark Vande Hei helped each spacewalker put on their suit, known as an Extravehicular Mobility Unit (EMU).

image

They then enter an airlock and regulate the pressure so that they can enter the vacuum of space safely. If they did not regulate the pressure safely, the astronauts could experience something referred to as “the bends” – similar to scuba divers.

Once the two astronauts exited the airlock and were outside the space station, they went to their respective work stations.

image

Bresnik replaced a failed fuse on the end of the Dextre robotic arm extension, which helps capture visiting vehicles.

image

During that time, Acaba set up a portable foot restraint to help him get in the right position to install a new camera.

image

While he was getting set up, he realized that there was unexpected wearing on one of his safety tethers. Astronauts have multiple safety mechanisms for spacewalking, including a “jet pack” on their spacesuit. That way, in the unlikely instance they become untethered from the station, the are able to propel back to safety.

image

Bresnik was a great teammate and brought Acaba a spare safety tether to use.

image

Once Acaba secured himself in the foot restraint that was attached to the end of the station’s robotic arm, he was maneuvered into place to install a new HD camera. Who was moving the arm? Astronauts inside the station were carefully moving it into place!

And, ta da! Below you can see one of the first views from the new enhanced HD camera…(sorry, not a GIF).

image

After Acaba installed the new HD camera, he repaired the camera system on the end of the robotic arm’s hand. This ensures that the hand can see the vehicles that it’s capturing.

image

Bresnik, completed all of his planned tasks and moved on to a few “get ahead” tasks. He first started removing extra thermal insulation straps around some spare pumps. This will allow easier access to these spare parts if and when they’re needed in the future.

image

He then worked to install a new handle on the outside of space station. That’s a space drill in the above GIF. 

image

After Acaba finished working on the robotic arm’s camera, he began greasing bearings on the new latching end effector (the arm’s “hand”), which was just installed on Oct. 5.

image

The duo completed all planned spacewalk tasks, cleaned up their work stations and headed back to the station’s airlock. 

image

Once safely inside the airlock and pressure was restored to the proper levels, the duo was greeted by the crew onboard. 

image

They took images of their spacesuits to document any possible tears, rips or stains, and took them off. 

image

Coverage ended at 2:36 p.m. EDT after 6 hours and 49 minutes. We hope the pair was able to grab some dinner and take a break!

You can watch the entire spacewalk HERE, or follow @Space_Station on Twitter and Instagram for regular updates on the orbiting laboratory. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

100 Days in Houston

A lot can happen in 100 days...

At our Johnson Space Center, located in Houston, it has been busy since July 10. Here are six things that have been going on in Houston with our astronauts, the International Space Station and our next great telescope! Take a look:

1. Our James Webb Space Telescope is Spending 100 Days in a Freezing Cold Chamber

Imagine seeing 13.5 billion light-years back in time, watching the birth of the first stars, galaxies evolve and solar systems form…our James Webb Space Telescope will do just that once it launches in 2019.

image

Webb will be the premier observatory of the next decade, studying every phase in the cosmic history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems.

On July 10, the Webb telescope entered Johnson Space Center’s historic Chamber A for its final cryogenic test that lasts about 100 days behind a closed giant vault-like door. 

Why did we put Webb in this freezing cold chamber? To ensure it can withstand the harsh environment it will experience in space.

image

The telescope has been in a space-like environment in the chamber, tested at cryogenic temperatures. In space, the telescope must operate at extremely cold temperatures so that it can detect infrared light – heat radiation -- from faint, distant objects. 

image

To keep the telescope cold while in space, Webb has a sunshield the size of a tennis court, which blocks sunlight (as well as reflected light from the Earth and Moon). This means that the sun-facing side of the observatory is incredibly hot while the telescope-side remains at sub-freezing temperatures.

2. Our 12 new astronaut candidates reported to Houston to start training

image

Our newest class of astronaut candidates, which were announced on June 7, reported for training on August 13. These candidates will train for two years on International Space Station systems, space vehicles and Russian language, among many other skills, before being flight-ready. 

3. Our Mission Control Center operated for 2,400 hours

image

While astronauts are in space, Mission Control operates around the clock making sure the crew is safe and the International Space Station is functioning properly. This means workers in Mission Control work in three shifts, 7 a.m. – 4 p.m., 3 p.m. – midnight and 11 p.m. – 8 a.m. This includes holidays and weekends. Day or night, Mission Control is up and running.

4. Key Teams at Johnson Space Center Continued Critical Operations During Hurricane Harvey

image

Although Johnson Space Center closed during Hurricane Harvey, key team members and critical personnel stayed onsite to ensure crucial operations would continue. Mission Control remained in operation throughout this period, as well as all backup systems required to maintain the James Webb Space Telescope, which is at Johnson for testing, were checked prior to the arrival of the storm, and were ready for use if necessary.

5. Crews on the International Space Station conducted hundreds of science experiments.

image

Mission Control at Johnson Space Center supported astronauts on board the International Space Station as they worked their typical schedule in the microgravity environment. Crew members work about 10 hours a day conducting science research that benefits life on Earth as well as prepares us for travel deeper into space. 

image

The space station team in Houston supported a rigorous schedule of launches of cargo that included supplies and science materials for the crew living and working in the orbiting laboratory, launched there by our commercial partners. 

6. Two new crews blasted off to space and a record breaking astronaut returned from a stay on space station

image

Houston is home to the Astronaut Corps, some of whom end up going out-of-this-world. On July 28, NASA Astronaut Randy Bresnik launched to the International Space Station alongside Italian astronaut Paolo Naspoli and Russian cosmonaut Sergey Ryazanskiy. Joining them at the International Space Station were NASA Astronauts Joe Acaba and Mark Vande Hei who launched September 12 with Russian cosmonaut Alexander Misurkin.

image

When NASA Astronaut Peggy Whitson landed with crewmates Jack Fischer of NASA and Fyoder Yurchikhin of Roscosmos, she broke the record for the most cumulative time in space by a U.S. astronaut. She landed with over 650 days of cumulative flight time and more than 53 hours of spacewalk time. Upon her return, the Human Research Program in Houston studies her health and how the human body adapted to her time in space.

Learn more about the Johnson Space Center online, or on Facebook, Twitter or Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Coffee in Space: Keeping Crew Members Grounded in Flight

Happy National Coffee Day, coffee lovers! 

On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.

image

Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.

image

The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!

image

The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.

image

On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.

image

The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.

image
image

Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts. 

image

Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.

image

We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

All Eyes on Harvey

Our Earth-observing satellites, along with the cameras and crew of the International Space Station, are keeping a watchful eye over Hurricane Harvey as it churns in the Gulf of Mexico. When Hurricane Harvey blows ashore over coastal Texas on Friday night, it will likely be the first major hurricane to make landfall in the United States since 2005.

image

Above is a view of Harvey from NOAA's GOES-East satellite captured on Aug. 25 at 10:07 a.m. EDT (1407 UTC) clearly showing the storm’s eye as Harvey nears landfall in the southeastern coast of Texas. As Hurricane Harvey continued to strengthen, we analyzed the storm’s rainfall, cloud heights and cloud top temperatures. 

image

Above, the Global Precipitation Mission (GPM) core observatory satellite flew almost directly above intensifying Hurricane Harvey on August 24, 2017 at 6:30 p.m. EDT (2230 UTC) and we used the Microwave Imager instrument to peer through dense storm clouds to reveal the location of intense rainfall bands near the center of the hurricane. 

And from the International Space Station, cameras were pointed towards Harvey as the orbiting laboratory passed overhead 250 miles above the Earth. The video above includes views from the space station recorded on August 24, 2017 at 6:15 p.m. Eastern Time.

The National Hurricane Center expects Harvey to be a category 3 storm on the Saffir-Simpson scale—with winds higher than 111 miles (179 kilometers) per hour—when it makes landfall. It will likely produce a storm surge of 6 to 12 feet (2 to 4 meters) and drop between 15 and 25 inches (38 and 63 centimeters) of rain in some areas—enough to produce life-threatening flash floods.

For updated forecasts, visit the National Hurricane Center.  Ensure you are prepared for Hurricanes. Get tips and more at  FEMA’s Ready site. Get the latest updates from NASA satellites by visiting our Hurricane site.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

New Research Heading to Earth’s Orbiting Laboratory

It’s a bird! It’s a plane! It’s a…dragon? A SpaceX Dragon spacecraft is set to launch into orbit atop the Falcon 9 rocket toward the International Space Station for its 12th commercial resupply (CRS-12) mission August 14 from our Kennedy Space Center in Florida.

image

It won’t breathe fire, but it will carry science that studies cosmic rays, protein crystal growth, bioengineered lung tissue.

image

Here are some highlights of research that will be delivered:

I scream, you scream, we all scream for ISS-CREAM! 

Cosmic Rays, Energetics and Mass, that is! Cosmic rays reach Earth from far outside the solar system with energies well beyond what man-made accelerators can achieve. The Cosmic Ray Energetics and Mass (ISS-CREAM) instrument measures the charges of cosmic rays ranging from hydrogen to iron nuclei. Cosmic rays are pieces of atoms that move through space at nearly the speed of light

image

The data collected from the instrument will help address fundamental science questions such as:

Do supernovae supply the bulk of cosmic rays?

What is the history of cosmic rays in the galaxy?

Can the energy spectra of cosmic rays result from a single mechanism?

ISS-CREAM’s three-year mission will help the scientific community to build a stronger understanding of the fundamental structure of the universe.

Space-grown crystals aid in understanding of Parkinson’s disease

The microgravity environment of the space station allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. 

image

Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, the Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) investigation will utilize the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease.

image

Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and could aid in the development of therapies against this target.

Mice Help Us Keep an Eye on Long-term Health Impacts of Spaceflight

Our eyes have a whole network of blood vessels, like the ones in the image below, in the retina—the back part of the eye that transforms light into information for your brain. We are sending mice to the space station (RR-9) to study how the fluids that move through these vessels shift their flow in microgravity, which can lead to impaired vision in astronauts.

image

By looking at how spaceflight affects not only the eyes, but other parts of the body such as joints, like hips and knees, in mice over a short period of time, we can develop countermeasures to protect astronauts over longer periods of space exploration, and help humans with visual impairments or arthritis on Earth.

Telescope-hosting nanosatellite tests new concept

The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging system payload, including an off-the-shelf telescope. This investigation validates the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations, such as tracking severe weather and detecting natural disasters.

image

Sponsored by the ISS National Laboratory, the overall mission goal for this investigation is to demonstrate that small satellites are viable platforms for providing critical path support to operations and hosting advanced payloads.

Growth of lung tissue in space could provide information about diseases

The Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) uses the microgravity environment of space to test strategies for growing new lung tissue. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue.

image

The goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

These crazy-cool investigations and others launching aboard the next SpaceX #Dragon cargo spacecraft on August 14. They will join many other investigations currently happening aboard the space station. Follow @ISS_Research on Twitter for more information about the science happening on 250 miles above Earth on the space station.  

Watch the launch live HERE starting at 12:20 p.m. EDT on Monday, Aug. 14!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

From Frozen Antarctica to the Cold Vacuum of Space

A new experiment that will collect tiny charged particles known as galactic cosmic rays will soon be added to the International Space Station. The Cosmic Ray Energetics And Mass for the International Space Station payload, nicknamed ISS-CREAM, will soon be installed in its new home on the Station’s Japanese Experiment Module Exposed Facility. ISS-CREAM will help scientists understand more about galactic cosmic rays and the processes that produce them.

image

Wait, what are cosmic rays?

Cosmic rays are pieces of atoms that move through space at nearly the speed of light. Galactic cosmic rays come from beyond our solar system. 

image

They provide us with direct samples of matter from distant places in our galaxy.

Why do these things go so fast?

Galactic cosmic rays have been sped up by extreme processes. When massive stars die, they explode as supernovas. The explosion’s blast wave expands into space along with a cloud of debris. 

image

Particles caught up in this blast wave can bounce around in it and slowly pick up speed. Eventually they move so fast they can escape the blast wave and race away as a cosmic ray.

Where can we catch cosmic rays?

Cosmic rays are constantly zipping through space at these super-fast speeds, running into whatever is in their path -- including Earth.  

image

But Earth’s atmosphere is a great shield, protecting us from 99.9 percent of the radiation coming from space, including most cosmic rays.  This is good news for life on Earth, but bad news for scientists studying cosmic rays.  

So… how do you deal with that?

Because Earth has such an effective shield against cosmic rays, the best place for scientists to study them is above our atmosphere -- in space.  Since the 1920s, scientists have tried to get their instruments as close to space as possible. One of the simplest ways to do this is to send these instruments up on balloons the size of football stadiums. These balloons are so large because they have to be able to both lift their own weight and that of their cargo, which can be heavier than a car. Scientific balloons fly to 120,000 feet or more above the ground -- that’s at least three times higher than you might fly in a commercial airplane!  

image

Credit: Isaac Mognet (Pennsylvania State University)

Earlier versions of ISS-CREAM’s instruments were launched on these giant balloons from McMurdo Station in Antarctica seven times, starting in 2004, for a total of 191 days near the top of the atmosphere.  Each of these flights helped the team test their hardware and work towards sending a cutting-edge cosmic ray detector into space!  

How is going to space different than flying balloons?

Balloon flights allowed the team to collect a lot of cosmic rays, but even at 120,000 feet, a lot of the particles are still blocked. Scientists at the University of Maryland, College Park, who operate ISS-CREAM, expect to get about 10 times as much data from their new home on the International Space Station. 

image

That’s because it will be both above the atmosphere and fly far longer than is possible with a balloon. As you might imagine, there are large differences between flying something on a balloon and launching it into space. The science instruments and other systems had to be changed so ISS-CREAM could safely launch on a rocket and work in space.

What will ISS-CREAM do?

While on the space station, ISS-CREAM will collect millions of cosmic rays -- electrons, protons and atomic nuclei representing the elements found in the solar system. These results will help us understand why cosmic rays reach the wicked-fast speeds they do and, most important, what limits those speeds.

ISS-CREAM launches to the International Space Station aboard the latest SpaceX Dragon spacecraft, targeted to launch August 14. Want to learn more about ISS-CREAM and some of our scientific balloons? Check out our recent feature, NASA’s Scientific Balloon Program Reaches New Heights.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Our pale blue dot, planet Earth, is seen in this video captured by NASA astronaut Jack Fischer from his unique vantage point on the International Space Station. From 250 miles above our home planet, this time-lapse imagery takes us over the Pacific Ocean’s moon glint and above the night lights of San Francisco, CA. The thin hue of our atmosphere is visible surrounding our planet with a majestic white layer of clouds sporadically seen underneath.

The International Space Station is currently home to 6 people who are living and working in microgravity. As it orbits our planet at 17,500 miles per hour, the crew onboard is conducting important research that benefits life here on Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
We’re Studying A New Method Of Water Recycling And Carbon Dioxide Removal That Relies On Specific Geometric

We’re studying a new method of water recycling and carbon dioxide removal that relies on specific geometric shapes and fluid dynamics, rather than complex machinery, in an effort to help build better life support systems for spacecraft. The research could also teach us more about the water processing approaches we take on Earth. Here, NASA astronaut Jack Fischer, is working with the Capillary Structures for Exploration Life Support (Capillary Structures) investigation capillary sorbent hardware that is made up of 3D printed contractors that are supported by tubing, valves and a pump.

Learn more about how this highly interactive investigation works, and what we could learn from the results HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
Freaky Fast And Really Awesome! NASA Astronaut Jack Fischer Posted This GIF To His Social Media Tuesday

Freaky fast and really awesome! NASA astronaut Jack Fischer posted this GIF to his social media Tuesday saying, “I was checking the view out the back window & decided to take a pic so you can see proof of our ludicrous speed! #SpaceIsAwesome”.

In case you didn’t know, the International Space Station travels 17,500 miles per hour as it orbits 250 miles above the Earth.

Currently, three humans are living and working there, conducting important science and research. The orbiting laboratory is home to more than 250 experiments, including some that are helping us determine the effects of microgravity on the human body. Research on the station will not only help us send humans deeper into space than ever before, including to Mars, but also benefits life here on Earth.

Follow NASA astronaut Jack Fischer on Instagram and Twitter. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Five Ways the International Space Station’s National Lab Enables Commercial Research

A growing number of commercial partners use the International Space Station National Lab. With that growth, we will see more discoveries in fundamental and applied research that could improve life on the ground.

image

Space Station astronaut Kate Rubins was the first person to sequence DNA in microgravity.

Since 2011, when we engaged the Center for the Advancement of Science in Space (CASIS) to manage the International Space Station (ISS) National Lab, CASIS has partnered with academic researchers, other government organizations, startups and major commercial companies to take advantage of the unique microgravity lab. Today, more than 50 percent of CASIS’ experiments on the station represent commercial research.

Here’s a look at five ways the ISS National Lab is enabling new opportunities for commercial research in space.

1. Supporting Commercial Life Sciences Research

image

One of the main areas of focus for us in the early origins of the space station program was life sciences, and it is still a major priority today. Studying the effects of microgravity on astronauts provides insight into human physiology, and how it evolves or erodes in space. CASIS took this knowledge and began robust outreach to the pharmaceutical community, which could now take advantage of the microgravity environment on the ISS National Lab to develop and enhance therapies for patients on Earth. Companies such as Merck, Eli Lilly & Company, and Novartis have sent several experiments to the station, including investigations aimed at studying diseases such as osteoporosis, and examining ways to enhance drug tablets for increased potency to help patients on Earth. These companies are trailblazers for many other life science companies that are looking at how the ISS National Lab can advance their research efforts.

2. Enabling Commercial Investigations in Material and Physical Sciences

image

Over the past few years, CASIS and the ISS National Lab also have seen a major push toward material and physical sciences research by companies interested in enhancing their products for consumers. Examples range from Proctor and Gamble’s investigation aimed at increasing the longevity of daily household products, to Milliken’s flame-retardant textile investigation to improve protective clothing for individuals in harm’s way, and companies looking to enhance materials for household appliances. Additionally, CASIS has been working with a variety of companies to improve remote sensing capabilities in order to better monitor our oceans, predict harmful algal blooms, and ultimately, to better understand our planet from a vantage point roughly 250 miles above Earth.

3. Supporting Startup Companies Interested in Microgravity Research 

image

CASIS has funded a variety of investigations with small startup companies (in particular through seed funding and grant funding from partnerships and funded solicitations) to leverage the ISS National Lab for both research and test-validation model experiments. CASIS and The Boeing Company recently partnered with MassChallenge, the largest startup accelerator in the world, to fund three startup companies to conduct microgravity research.

4. Enabling Validation of Low-Earth Orbit Business Models 

image

The ISS National Lab helps validate low-Earth orbit business models. Companies such as NanoRacks, Space Tango, Made In Space, Techshot, and Controlled Dynamics either have been funded by CASIS or have sent instruments to the ISS National Lab that the research community can use, and that open new channels for inquiry. This has allowed the companies that operate these facilities to validate their business models, while also building for the future beyond station.

5. Demonstrating the Commercial Value of Space-based Research

We have been a key partner in working with CASIS to demonstrate to American businesses the value of conducting research in space. Through outreach events such as our Destination Station, where representatives from the International Space Station Program Science Office and CASIS select cities with several major companies and meet with the companies to discuss how they could benefit from space-based research. Over the past few years, this outreach has proven to be a terrific example of building awareness on the benefits of microgravity research.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.

Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.

ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!

This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Expedition 52 Begins Aboard Space Station

When humans launch to the International Space Station, they are members of expeditions. An expedition is long duration stay on the space station. The first expedition started when the crew docked to the station on Nov. 2, 2000.

Expedition 52 began in June 2017 aboard the orbiting laboratory and will end in September 2017. 

image

FUN FACT: Each Expedition begins with the undocking of the spacecraft carrying the departing crew from the previous Expedition. So Expedition 52 began with the undocking of the Soyuz MS-03 spacecraft that brought Expedition 51 crew members Oleg Novitskiy and Thomas Pesquet back to Earth, leaving NASA astronauts Peggy Whitson and Jack Fischer and Roscosmos cosmonaut Fyodor Yurchikhin aboard the station to await the arrival of the rest of the Expedition 52 crew in July.

image

This expedition includes dozens of out of this world science investigations and a crew that takes #SquadGoals to a whole new level. 

image

Take a look below to get to know the crew members and some of the science that will occur during the space station’s 52nd expedition.

Crew

Expedition 52 Begins Aboard Space Station

Fyodor Yurchikhin (Roscosmos) – Commander

Born: Batumi, Adjar ASSR, Georgian SSR Interests: collecting stamps and space logos, sports, history of cosmonautics and reading Spaceflights: STS-112, Exps. 15, 24/25, 36/37, 51 Bio: https://go.nasa.gov/2o9PO9F 

image

Jack Fischer (NASA) – Flight Engineer

Born:  Louisville, Colorado. Interests: spending time with my family, flying, camping, traveling and construction Spaceflights: Expedition 51 Twitter: @Astro2Fish Bio: https://go.nasa.gov/2o9FY7o

image

Peggy Whitson (NASA) – Flight Engineer

Born: Mount Ayr, Iowa Interests: weightlifting, biking, basketball and water skiing Spaceflights: STS-111, STS – 113, Exps. 5, 16, 50, 51, 52 Twitter: @AstroPeggy Bio:  https://go.nasa.gov/2rpL58x

image

Randolph Bresnik (NASA) – Flight Engineer

Born: Fort Knox, Kentucky Interests: travel, music, photography, weight training, sports, scuba diving, motorcycling, and flying warbirds Spaceflights: STS-129 and STS-135 Twitter: @AstroKomrade Bio: https://go.nasa.gov/2rq5Ssm

image

Sergey Ryazanskiy (Roscosmos) – Flight Engineer

Born: Moscow, Soviet Union Interests: Numismatics, playing the guitar, tourism, sport games Spaceflights: Exps. 37/38 Twitter: @Ryazanskiy_ISS Bio: https://go.nasa.gov/2rpXfOK

Expedition 52 Begins Aboard Space Station

Paolo Nespoli (ESA) – Flight Engineer

Born: Milan, Italy Interests: scuba diving, piloting aircraft, assembling computer hardware, electronic equipment and computer software Spaceflights: STS-120, Exps. 26/27 Bio: https://go.nasa.gov/2rq0tlk

What will the crew be doing during Expedition 52?

image

In addition to one tentatively planned spacewalk, crew members will conduct scientific investigations that will demonstrate more efficient solar arrays, study the physics of neutron stars, study a new drug to fight osteoporosis and study the adverse effects of prolonged exposure to microgravity on the heart.

image

Roll-Out Solar Array (ROSA)

Solar panels are an efficient way to generate power, but they can be delicate and large when used to power a spacecraft or satellites. They are often tightly stowed for launch and then must be unfolded when the spacecraft reaches orbit.

image

The Roll-Out Solar Array (ROSA), is a solar panel concept that is lighter and stores more compactly for launch than the rigid solar panels currently in use. ROSA has solar cells on a flexible blanket and a framework that rolls out like a tape measure.  

Neutron Star Interior Composition Explored (NICER)

Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, are the densest objects in the universe, and contain exotic states of matter that are impossible to replicate in any ground lab.

image

The Neutron Star Interior Composition Explored (NICER) payload, affixed to the exterior of the space station, studies the physics of these stars, providing new insight into their nature and behavior.

Systemic Therapy of NELL-1 for Osteoporosis (Rodent Research-5)

When people and animals spend extended periods of time in space, they experience bone density loss. The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.

image

Fruit Fly Lab-02

Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity. The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart.

image

Watch their progress HERE!

Expedition 52 Mission Patch 

Our planet is shown surrounded by an imaginary constellation shaped like a house, depicting the theme of the patch: “The Earth is our home.” It is our precious cradle, to be preserved for all future generations. The house of stars just touches the Moon, acknowledging the first steps we have already taken there, while Mars is not far away, just beyond the International Space Station, symbolized by the Roman numeral “LII,” signifying the expedition number. 

image

The planets Saturn and Jupiter, seen orbiting farther away, symbolize humanity’s exploration of deeper space, which will begin soon. A small Sputnik is seen circling the Earth on the same orbit with the space station, bridging the beginning of our cosmic quest till now: Expedition 52 will launch in 2017, sixty years after that first satellite. Two groups of crew names signify the pair of Soyuz vehicles that will launch the astronauts of Expedition 52 to the Station. 

Click here for more details about the expedition and follow @ISS_Research on Twitter to stay up to date on the science happening aboard YOUR orbiting laboratory!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

5 Training Requirements for New Astronauts

After evaluating a record number of applications, we will introduce our newest class of astronaut candidates on June 7!

image

Upon reporting to duty at our Johnson Space Center in Houston, the new astronaut candidates will complete two years of training before they are eligible to be assigned to a mission. 

Here are the five training criteria they must check off to graduate from astronaut candidate to astronaut:

1. T-38 Jets

image

Astronauts have been training in T-38 jets for more than 35 years because the sleek, white jets require crew members to think quickly in dynamic situations and to make decisions that have real consequences. This type of mental experience is critical to preparing for the rigors of spaceflight. To check off this training criteria, astronaut candidates must be able to safely operate in the T-38 as either a pilot or back seater.

2. International Space Station Systems

image

We are currently flying astronauts to the International Space Station every few months. Astronauts aboard the space station are conducting experiments benefitting humanity on Earth and teaching us how to live longer in space. Astronaut candidates learn to operate and maintain the complex systems aboard the space station as part of their basic training.

3. Spacewalks

image

Spacewalks are the hardest thing, physically and mentally, that astronauts do. Astronaut candidates must demonstrate the skills to complete complex spacewalks in our Neutral Buoyancy Laboratory (giant pool used to simulate weightlessness).  In order to do so, they will train on the life support systems within the spacesuit, how to handle emergency situations that can arise and how to work effectively as a team to repair the many critical systems aboard the International Space Station to keep it functioning as our science laboratory in space.  

4. Robotics

image

Astronaut candidates learn the coordinate systems, terminology and how to operate the space station’s robotic arm. They train in Canada for a two week session where they develop more complex robotics skills including capturing visiting cargo vehicles with the arm. The arm, built by the Canadian Space Agency, is capable of handling large cargo and hardware, and helped build the entire space station. It has latches on either end, allowing it to be moved by both flight controllers on the ground and astronauts in space to various parts of the station.

5. Russian Language

image

The official languages of the International Space Station are English and Russian, and all crewmembers – regardless of what country they come from – are required to know both. NASA astronauts train with their Russian crew mates and launch on the Russian Soyuz vehicle, so it makes sense that they should be able to speak Russian. Astronaut candidates start learning the language at the beginning of their training. They train on this skill every week, as their schedule allows, to keep in practice.

Now, they are ready for their astronaut pin!

After completing this general training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.

image

Watch the Astronaut Announcement LIVE!

We will introduce our new astronaut candidates at 2 p.m. EDT Wednesday, June 7, from our Johnson Space Center in Houston. 

Watch live online at nasa.gov/live or on NASA’s Facebook Page. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

6 Ways NASA Space Communications Connect Astronauts to Earth

1. When Astronauts Phone Home, the Space Network Answers 

image

Operated by our Goddard Space Flight Center in Greenbelt, Maryland, this communications system enables all types of Earth-to-astronaut communication.  The Space Network is a complex system of ground station terminals and satellites. The satellites, called ‘Tracking and Data Relay Satellites’ or TDRS, provide continuous communications for human spaceflight 24/7/365. The information this network relays includes astronaut communication with Mission Control in Houston, posting live video of spacewalks and live interviews with schools, even posting Tweets on Twitter and doing Facebook posts. The Space Network can even broadcast live 4K, ultra-HD video right from the station. You can now watch an astronaut eat a space taco in high definition. WHAT A TIME TO BE ALIVE!

2. The Space Network Also Communicates Science Data 

image

Astronauts on the Space Station perform experiments on the station that will enable our Journey to Mars and other future human space missions. For example, astronaut Peggy Whitson works on a bone cell study that could lead to better preventative care or therapeutic treatments for people suffering bone loss as a result of bone diseases like osteopenia and osteoporosis, or for patients on prolonged bed rest. All that fantastic data is sent back to Earth via our Space Network for scientists around the world to analyze and build on.

3. The Space Network Transmits Spacecraft Health Data

image

The Space Network not only lets us communicate with the astronauts, it also tracks the ‘health’ of the spacecraft, be it the International Space Station where the astronauts are living, a cargo vehicle servicing the space station, or even, in the near future, crewed vehicles to other worlds. We deliver data on a spacecraft’s state of health, from power generation levels and avionics status to carbon dioxide and oxygen levels, and more to Mission Control 24/7/365.

4. The Space Network Helps Monitor Spacecraft Location

image

The International Space Station Is pretty big, but space is bigger. The Space Network enables flight controllers on the ground to provide a GPS-type service for the Space Station, letting them track the exact location of the space station at all times as it orbits the Earth. It also allows us Earth-bound folk to get real-time text updates when the Space Station is flying overhead. If you want to track the station, sign up here: https://spotthestation.nasa.gov

5. The Space Network Supports Launch Vehicles

image

Goddard’s Space Network also controls all the communications for all the missions that go to the space station. That includes command and telemetry services during launches, free flight, berthing and un-berthing to the station, as well as re-entry and landing back to Earth. 

6. The Space Network Is Also Looking Toward the Future

image

It’s also helping to test vehicles that will carry astronauts to other worlds. Currently, they are working with teams for our Space Launch System and commercial crew vehicles. The first flights for these vehicles will occur in 2018 and 2019, setting us on the road to Journey to Mars! This image shows the Orion capsule that will aid in our continuous march into space. 

What’s Next for the Space Network? 

We’re continuing to grow! Watch out for the launch of a new TDRS spacecraft in August 2017! TDRS-M is coming. Check out more info here and join our countdown to TDRS launch: https://tdrs.gsfc.nasa.gov. 


Tags
7 years ago
It's Launch Day! 

It's Launch Day! 

Final preparations are underway for today's 5:55 p.m. EDT launch of the eleventh SpaceX cargo resupply mission to the International Space Station  from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The SpaceX Dragon spacecraft will liftoff into orbit atop the Falcon 9 rocket carrying about 6,000 pounds of crew supplies, equipment and scientific research to crewmembers living aboard the station. The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more. Watch live coverage starting today at 5:15pm ET at http://www.nasa.gov/live

Learn more about the mission and launch at http://www.nasa.gov/spacex

Image credit: NASA/Bill Ingalls

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

SpaceX Sends Super Science to Space Station!

SpaceX is scheduled to launch its Dragon spacecraft PACKED with super cool research and technology to the International Space Station June 1 from Kennedy Space Center in Florida. New solar panels, investigations that study neutron stars and even fruit flies are on the cargo list. Let’s take a look at what other bits of science are making their way to the orbiting laboratory 250 miles above the Earth…

image

New solar panels to test concept for more efficient power source

Solar panels generate power well, but they can be delicate and large when used to power a spacecraft or satellites. This technology demonstration is a solar panel concept that is lighter and stores more compactly for launch than the solar panels currently in use. 

SpaceX Sends Super Science To Space Station!

Roll-Out Solar Array (ROSA) has solar cells on a flexible blanket and a framework that rolls out like a tape measure and snap into place, and could be used to power future space vehicles.  

Investigation to Study Composition of Neutron Stars

Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, contain exotic states of matter that are impossible to replicate in any lab. NICER studies the makeup of these stars, and could provide new insight into their nature and super weird behavior.

image

Neutron stars emit X-ray radiation, enabling the NICER technology to observe and record information about its structure, dynamics and energetics. 

Experiment to Study Effect of New Drug on Bone Loss

When people and animals spend lots of space, they experience bone density loss. In-flight exercise can prevent it from getting worse, but there isn’t a therapy on Earth or in space that can restore bone that is already lost.

image

The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.

Research to Understand Cardiovascular Changes

Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity.

image

The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart. Fruit flies are effective model organisms, and we don’t mean on the fashion runway. Want to see how 1,000 bottles of fruit flies were prepared to go to space? Check THIS out.

Space Life-Support Investigation

Currently, the life-support systems aboard the space station require special equipment to separate liquids and gases. This technology utilizes rotating and moving parts that, if broken or otherwise compromised, could cause contamination aboard the station. 

SpaceX Sends Super Science To Space Station!

The Capillary Structures investigation studies a new method of water recycling and carbon dioxide removal using structures designed in specific shapes to manage fluid and gas mixtures. 

Earth-Observation Tools

Orbiting approximately 250 miles above the Earth’s surface, the space station provides pretty amazing views of the Earth. The Multiple User System for Earth Sensing (MUSES) facility hosts Earth-viewing instruments such as high-resolution digital cameras, hyperspectral imagers, and provides precision pointing and other accommodations.

image

This investigation can produce data that could be used for maritime domain awareness, agricultural awareness, food security, disaster response, air quality, oil and gas exploration and fire detection. 

Watch the launch live HERE! For all things space station science, follow @ISS_Research on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

5 Times Astronaut Jack Fischer Said Something in Space Was “Awesome”

Meet astronaut Jack Fischer…

image

He was selected as a NASA astronaut in July 2009, and is currently living and working in space for his first time. As you can imagine, going to space for the first time is both nerve-wracking and exciting. You may or may not know just how excited he actually is to be 250 miles above the Earth...To communicate his elation, he has frequently used some version of the word “awesome”.

FYI, that’s a picture of Fischer about to eat a coffee ball on station. For more on his opinion of coffee balls, check THIS out.

Let’s take a look at a few times astronaut Jack Fischer said something in space was “awesome”…

1. Burrito Smothered in Awesomesauce 

Immediately following the hatch opening to the International Space Station and Jack Fischer arriving at his new orbital home, they had the chance to speak to their families. During this time, he explained to his wife what it was like to be in space...obviously using the word awesome in the process: “It’s a burrito of awesomeness, smothered in awesomesauce baby, it’s so beautiful!”

2. Awesome Views from Space

image

Astronauts commonly say that one of the best parts of being on space station is the view. Earth from 250 miles above can look stunning...or as Fischer puts it...awesome!

3. Tornado of Awesomeness 

Fischer shared this video on his Twitter account on May 6 saying, “Sometimes, on a weekend, you have to spin about wildly…we can call it a tornado of awesomeness—because weightlessness is awesome!”

4. Awesome #SpaceSelfie

image

This selfie, taken during Fischer’s first-ever spacewalk is AWESOME and shows his cheesing smile from behind his spacesuit helmet. Check out a recap of Fischer’s first spacewalk, conducted on May 12, HERE. 

5. Fondue Pot Bubbling Over with Awesome Sauce

In this video, also taken during Fischer’s first spacewalk on May 12, you can hear his real-time reaction to seeing the Earth from outside the space station. Describing it like a “Ginormous fondue pot, bubbling over with piping hot awesomesauce.”

Why the Burrito References?

image

You might be wondering where all this burrito talk comes from. In a pre-flight interview, Fischer explained that he doesn’t particularly like sweets...so for his birthday, his wife will commonly make him bean burritos smothered in green chili and cheese! Watch the full video for 5 facts you may not know about Fischer HERE.

Want more awesomeness from Jack Fischer? Follow him on social media for regular, awesome updates!

Twitter | Facebook | Instagram

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Friday Stroll? How About a Spacewalk?

On Friday, May 12, NASA astronauts Peggy Whitson and Jack Fischer will venture outside the International Space Station, into the vacuum of space, for a spacewalk.

image

Space Fact: This will be the 200th spacewalk performed on the space station!

You can watch their entire 6.5 hour spacewalk live online! (Viewing info below!) To tell the two astronauts apart in their bulky spacewalk suits, Whitson will be wearing the suit with red stripes, while Jack Fischer will have white stripes.

image

Space Fact: The first-ever spacewalk on the International Space Station was performed on Dec. 7, 1998.

For Peggy, this will be her ninth spacewalk! She actually holds the record for most spacewalks by a female astronaut. For Fischer, this is his first time in space, and will be his first spacewalk. You can see from the below Tweet, he’s pretty excited!

image

Once both astronauts venture outside the Quest airlock, their tasks will focus on:

Replacing a large avionic box that supplies electricity and data connections to the science experiments

Replacing hardware stored outside the station

Specifically, the ExPRESS Carrier Avionics, or ExPCA will be replaced with a unit delivered to the station last month aboard the Orbital ATK Cygnus cargo spacecraft.

image

Ever wonder how astronauts prepare and practice for these activities? Think about it, wearing a bulky spacesuit (with gloves!), floating in the vacuum of space, PLUS you have to perform complex tasks for a period of ~6.5 hours! 

In order to train on Earth, astronauts complete tasks in our Neutral Buoyancy Laboratory (NBL). It’s a gigantic pool with a full mock up of the International Space Station! Here’s a clip of astronauts practicing to install the ExPCA in that practice pool at Johnson Space Center in Houston. 

image

In addition, Whitson and Fischer will install a connector that will route data to the Alpha Magnetic Spectrometer and help the crew determine the most efficient way to conduct future maintenance on the cosmic ray detector.

image

The astronauts will also install a protective shield on the Pressurized Mating Adapter-3, which was moved in March. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

image

Finally, the duo will rig a new high-definition camera and pair of wireless antennas to the exterior of the outpost.

Watch the Spacewalk Live!

image

Live coverage will begin at 6:30 a.m. EDT, with spacewalk activities starting at 8 a.m. EDT. 

Stream the entire spacewalk live online at nasa.gov/live 

OR 

Watch live on the International Space Station Facebook page starting at 7:00 a.m. EDT

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

With only four months left in the mission, Cassini is busy at Saturn. The upcoming cargo launch, anniversaries and more!

As our Cassini spacecraft made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. Credits: NASA/JPL-Caltech/Space Science Institute/Hampton University

1-3. The Grand Finale

Our Cassini spacecraft has begun its final mission at Saturn. Some dates to note:

May 28, 2017: Cassini makes its riskiest ring crossing as it ventures deeper into Saturn's innermost ring (D ring).

June 29, 2017: On this day in 2004, the Cassini orbiter and its travel companion the European Space Agency's Huygens probe arrived at Saturn.

September 15, 2017: In a final, spectacular dive, Cassini will plunge into Saturn - beaming science data about Saturn's atmosphere back to Earth to the last second. It's all over at 5:08 a.m. PDT.

More about the Grand Finale

image

4. Cargo Launch to the International Space Station

June 1, 2017: Target date of the cargo launch. The uncrewed Dragon spacecraft will launch on a Falcon 9 from Launch Complex 39A at our Kennedy Space Center in Florida. The payload includes NICER, an instrument to measure neutron stars, and ROSA, a Roll-Out Solar Array that will test a new solar panel that rolls open in space like a party favor.

More

image

5. Sojourner

July 4, 2017: Twenty years ago, a wagon-sized rover named Sojourner blazed the trail for future Mars explorers - both robots and, one day, humans. Take a trip back in time to the vintage Mars Pathfinder websites:

More

image

6. Voyager

August 20, 2017: Forty years and still going strong, our twin Voyagers mark 40 years since they left Earth.

More

7. Total Solar Eclipse

image

August 21, 2017: All of North America will be treated to a rare celestial event: a total solar eclipse. The path of totality runs from Oregon to South Carolina.

More

8. From Science Fiction to Science Fact

Light a candle for the man who took rocketry from science fiction to science fact. On this day in 1882, Robert H. Goddard was born in Worcester, Massachusetts.

More

image

9. Looking at the Moon

October 28, 2017: Howl (or look) at the moon with the rest of the world. It's time for the annual International Observe the Moon Night.

More

image

10. Last Human on the Moon

December 13, 2017: Forty-five years ago, Apollo 17 astronaut Gene Cernan left the last human footprint on the moon.

More

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Ever Want To Ask A Real Life Astronaut A Question? Here’s Your Chance!

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronaut Jeanette Epps will be taking your questions in an Answer Time session on Friday, May 5 from 10am - 11am ET here on NASA’s Tumblr. See the questions she’s answered by visiting nasa.tumblr.com/tagged/answertime!

NASA astronaut Jeanette J. Epps (Ph.D.) was selected as an astronaut in 2009. She has been assigned to her first spaceflight, which is scheduled to launch in May 2018. Her training included scientific and technical briefings, intensive instruction in International Space Station systems, spacewalk training, robotics, T‐38 flight training and wilderness survival training.

Before becoming an astronaut, Epps worked as a Technical Intelligence Officer at the Central Intelligence Agency (CIA).

Born in Syracuse, New York. Enjoys traveling, reading, running, mentoring, scuba diving and family.

She has a Bachelor of Science in Physics from LeMoyne College, as well as a Master of Science and Doctorate of Philosophy in Aerospace Engineering from the University of Maryland. 

Follow Jeanette on Twitter at @Astro_Jeanette and follow NASA on Tumblr for your regular dose of space.


Tags
8 years ago

Five Times Astronaut Peggy Whitson Made History

On April 24, 2017, NASA Astronaut Peggy Whitson established the new record for the most time spent in space by an American astronaut. She’s spent more than 76 weeks of her life floating in microgravity!  It’s not the first time in her career at NASA that Whitson has established new milestones: here are just a few.

image

First NASA Science Officer

Peggy Whitson was the named the first NASA Science Officer aboard the space station in 2002. The position was created to work with the United States research community to understand and meet the requirements and objectives of each space station experiment.

image

First Female to Command the Space Station… Twice

Whitson became the first female to command the space station during Expedition 16 in 2008. Then Whitson became the first female to command the station twice during her current mission on April 9, 2017.

image

First Female Chief of the Astronaut Office

In 2009, Whitson became the first female and first non-pilot to achieve the most senior position for active astronauts, Chief of the Astronaut Office.

image

Most Spacewalks for a Female

On March 30, 2017, Peggy Whitson broke the record for most spacewalks and most time spent spacewalking for female astronauts. Suni Williams had previously held the record at 7 spacewalks.

Five Times Astronaut Peggy Whitson Made History

Most Time In Space By A NASA Astronaut

At 1:27 a.m. ET on April 24, Peggy Whitson set the new record for cumulative time spent in space by an American astronaut. Jeff Williams previously set the record in 2016.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Science in Space!

What science is headed to the International Space Station with Orbital ATK’s cargo resupply launch? From investigations that study magnetic cell culturing to crystal growth, let’s take a look…

image

Orbital ATK is targeted to launch its Cygnus spacecraft into orbit on April 18, delivering tons of cargo, supplies and experiments to the crew onboard.

Efficacy and Metabolism of Azonafide Antibody-Drug Conjugates in Microgravity Investigation

In microgravity, cancer cells grow in 3-D. Structures that closely resemble their form in the human body, which allows us to better test the efficacy of a drug. This experiment tests new antibody drug conjugates.

image

These conjugates combine an immune-activating drug with antibodies and target only cancer cells, which could potentially increase the effectiveness of chemotherapy and potentially reduce the associated side-effects. Results from this investigation could help inform drug design for cancer patients, as well as more insight into how microgravity effects a drug’s performance.

Genes in Space

image

The Genes in Space-2 experiment aims to understand how the regulation of telomeres (protective caps on the tips of chromosomes) can change during spaceflight. Julian Rubinfien, 16-year-old DNA scientist and now space researcher, is sending his experiment to space as part of this investigation. 

3-D Cell Culturing in Space

Cells cultured in space spontaneously grow in 3-D, as opposed to cells cultured on Earth which grow in 2-D, resulting in characteristics more representative of how cells grow and function in living organisms. The Magnetic 3-D Cell Culture for Biological Research in Microgravity investigation will test magnetized cells and tools that may make it easier to handle cells and cell cultures.

This could help investigators improve the ability to reproduce similar investigations on Earth.

SUBSA

The Solidification Using a Baffle in Sealed Ampoules (SUBSA) investigation was originally operated successfully aboard the space station in 2002. 

image

Although it has been updated with modernized software, data acquisition, high definition video and communications interfaces, its objective remains the same: advance our understanding of the processes involved in semiconductor crystal growth. 

Space Debris

Out-of-function satellites, spent rocket stages and other debris frequently reenter Earth’s atmosphere, where most of it breaks up and disintegrates before hitting the ground. However, some larger objects can survive. The Thermal Protection Material Flight Test and Reentry Data Collection (RED-Data2) investigation will study a new type of recording device that rides alongside of a spacecraft reentering the Earth’s atmosphere. Along the way, it will record data about the extreme conditions it encounters, something scientists have been unable to test on a large scale thus afar.

image

Understanding what happens to a spacecraft as it reenters the atmosphere could lead to increased accuracy of spacecraft breakup predictions, an improved design of future spacecraft and the development of materials that can resist the extreme heat and pressure of returning to Earth. 

IceCube CubeSat

IceCube, a small satellite known as a CubeSat, will measure cloud ice using an 883-Gigahertz radiometer. Used to predict weather and climate models, IceCube will collect the first global map of cloud-induced radiances. 

image

The key objective for this investigation is to raise the technology readiness level, a NASA assessment that measures a technology’s maturity level.

Advanced Plant Habitat

Joining the space station’s growing list of facilities is the Advanced Plant Habitat, a fully enclosed, environmentally controlled plant habitat used to conduct plant bioscience research. This habitat integrates proven microgravity plant growth processes with newly-developed technologies to increase overall efficiency and reliability. 

image

The ability to cultivate plants for food and oxygen generation aboard the space station is a key step in the planning of longer-duration, deep space missions where frequent resupply missions may not be a possibility.

Watch Launch!

image

Orbital ATK and United Launch Alliance (ULA) are targeting Tuesday, April 18 for launch of the Cygnus cargo spacecraft to the International Space Station. Liftoff is currently slated for 11 a.m. EST.

Watch live HERE.

You can also watch the launch live in 360! This will be the world’s first live 360-degree stream of a rocket launch. Watch the 360 stream HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
"A Classic That I Never Get Tired Of: The Orange Solar Panel In Front Of The Blue–white Background

"A classic that I never get tired of: the orange solar panel in front of the blue–white background and the curvature of Earth" wrote astronaut Thomas Pesquet (@thom_astro) of the European Space Agency from aboard the International Space Station. 

The space station serves as the world's leading laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including Mars. 

Credit: NASA/ESA


Tags
8 years ago

This Week @ NASA--April 14, 2017

Cassini and the Hubble Space Telescope, two of our long-running missions, are providing new details about the ocean-bearing moons of Jupiter and Saturn. Hubble's monitoring of plume activity on Europa and Cassini's long-term investigation of Enceladus are laying the groundwork for our Europa Clipper mission, slated for launch in the 2020s. Also, Shane Kimbrough returns home after 171 days aboard the Space Station, celebrating the first Space Shuttle mission and more!

image

Ocean Worlds

Our two long-running missions, Cassini and the Hubble Space Telescope,  are providing new details about “ocean worlds,” specifically the moons of Jupiter and Saturn. 

image

The details – discussed during our April 13 science briefing – included the announcement by the Cassini mission team that a key ingredient for life has been found in the ocean on Saturn's moon Enceladus. 

image

Meanwhile, in 2016 Hubble spotted a likely plume erupting from Jupiter’s moon Europa at the same location as one in 2014, reenforcing the notion of liquid water erupting from the moon.

image

These observations are laying the groundwork for our Europa Clipper mission, planned for launch in the 2020s.

image

Welcome Home, Shane!

Shane Kimbrough and his Russian colleagues returned home safely after spending 173 days in space during his mission to the International Space Station.

image

Meet the Next Crew to Launch to the Station

Meanwhile, astronaut Peggy Whitson assumed command of the orbital platform and she and her crew await the next occupants of the station, which is slated to launch April 20.

image

Student Launch Initiative

We’ve announced the preliminary winner of the 2017 Student Launch Initiative that took place near our Marshall Space Fight Center, The final selection will be announced in May. The students showcased advanced aerospace and engineering skills by launching their respective model rockets to an altitude of one mile, deploying an automated parachute and safely landing them for re-use.

image

Langley’s New Lab

On April 11, a ground-breaking ceremony took place at our Langley Research Center for the new Systems Measurement Laboratory. The 175,000 square-foot facility will be a world class lab for the research and development of new measurement concepts, technologies and systems that will enable the to meet its missions in space explorations, science and aeronautics.

image

Yuri’s Night

Space fans celebrated Yuri’s Night on April 12 at the Air and Space Museum and around the world. On April 12, 1961, cosmonaut Yuri Gagrin became the first person to orbit the Earth.

image

Celebrating the First Space Shuttle Launch

On April 12, 1981, John Young and Bob Crippin launched aboard Space Shuttle Columbia on STS-1 a two-day mission, the first of the Shuttle Program’s 30-year history.

image

Watch the full episode:

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Touchdown! 

Touchdown! 

A Soyuz spacecraft is seen as it lands with astronaut Shane Kimbrough of NASA and Russian Flight Engineers Sergey Ryzhikov and Andrey Borisenko near the town of Zhezkazgan, Kazakhstan on Monday, April 10. Kimbrough, Ryzhikov, and Borisenko are returning after 173 days in space onboard the International Space Station. 

While living and working aboard the space station, the crew members contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory. For example, the Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity. 

Results from this investigation could lead to the treatment of diseases and injury in space, and provide a way to improve stem cell production for medical therapies on Earth. Photo Credit: (NASA/Bill Ingalls)

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Aboard The International Space Station, Astronaut Thomas Pesquet of The European Space Agency Snapped

Aboard the International Space Station, astronaut Thomas Pesquet of the European Space Agency snapped this photo and wrote, 'The view at night recently has been simply magnificent: few clouds, intense #aurora. I can't look away from the windows.' 

The dancing lights of the aurora provide stunning views, but also capture the imagination of scientists who study incoming energy and particles from the sun. Aurora are one effect of such energetic particles, which can speed out from the sun both in a steady stream called the solar wind and due to giant eruptions known as coronal mass ejections or CMEs. Credit: NASA/ESA

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Spacewalk Complete And New Astronaut Record Set! Shane Kimbrough and Peggy Whitson of NASA Successfully

Spacewalk complete and new astronaut record set! Shane Kimbrough and Peggy Whitson of NASA successfully reconnected cables and electrical connections on an adapter-3 that will provide the pressurized interface between the station and the second of two international docking adapters to be delivered to the complex to support the dockings of U.S. commercial crew spacecraft in the future. The duo were also tasked with installing four thermal protection shields on the Tranquility module of the International Space Station.

 Having completed her eighth spacewalk, Whitson now holds the record for the most spacewalks and accumulated time spacewalking by a female astronaut. Spacewalkers have now spent a total of 1,243 hours and 42 minutes outside the station during 199 spacewalks in support of assembly and maintenance of the orbiting laboratory.

 Astronaut Thomas Pesquet of ESA posted this image and wrote, ' Shane and Peggy on their way to their first #spacewalk tasks.'

 Credit: ESA/NASA


Tags
8 years ago
It's A Long Ways Down. This Is A View From The Vantage Point Of Astronaut Shane Kimbrough During His

It's a long ways down. This is a view from the vantage point of astronaut Shane Kimbrough during his spacewalk last Friday outside the International Space Station. Shane posted this photo and wrote, " View of our spectacular planet (and my boots) during the #spacewalk yesterday with @Thom_astro." During the spacewalk with Kimbrough and Thomas Pesquet of ESA, which lasted just over six-and-a-half hours, the two astronauts successfully disconnected cables and electrical connections to prepare for its robotic move Sunday, March 26.

Two astronauts will venture outside the space station again this Thursday, March 30 for the second of three spacewalks. Kimbrough and Flight Engineer Peggy Whitson will begin spacewalk preparation live on NASA Television starting at 6:30 a.m. EST, with activities beginning around 8 a.m. Watch live online here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Is there a pot of gold at the end of a green aurora? Not sure, but these dancing green lights provide a spectacular view fitting for the St. Patrick’s Day holiday. 

This stunning aurora was captured by NASA astronaut Jeff Williams during his 2016 mission on the International Space Station. 

Even though auroras are best seen at night, they are actually caused by the sun. The sun sends us more than just heat a light…it sends lots of other energy and small particles toward Earth. The protective magnetic field around Earth shields us from most of the energy and particles. Sometimes, the particles interact with gases in our atmosphere resulting in beautiful displays of light in the sky. Oxygen gives off green and red light, while nitrogen glows blue and purple.

Happy St. Patrick’s Day!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

One Year Later

On March 1, 2016, veteran astronaut Scott Kelly returned from his Year in Space mission. In many ways, the adventure was just beginning.

image

The spaceflight part of the One Year Misson to the International Space Station ended a year ago today, but the science behind it is still moving. Astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko continue to provide samples for the data collection from their ground-breaking mission. Results are expected to to start coming later in 2017, which will help launch humanity on deep space missions.

image

Kelly not only commanded the International Space Station’s Expedition 46, he participated in spacewalks like this one on Dec. 21, 2015, in which Kelly and astronaut Tim Kopra successfully moved the Space Station's mobile transporter rail car ahead of the docking of a Russian cargo supply spacecraft.

image

On the station in 2015, Kelly showed off his home away from home. Scott tweeted this image out with the comment: "My #bedroom aboard #ISS. All the comforts of #home. Well, most of them. #YearInSpace." 

Why was the Year In Space important? As we work to extend our reach beyond low-Earth orbit, how the human body reacts to microgravity for extended periods is of paramount importance. Not only were Kelly and his Russian counterpart monitored throughout the mission, they both continue to submit to tests and monitoring one year later to see if there are any lasting effects from their voyage aboard the station. 

Scott Kelly also a human control here on Earth, his identical twin brother and fellow astronaut Mark Kelly. Both brothers have served aboard the International Space Station, but Scott’s stay was almost twice as long as typical U.S. missions. The continuing investigations are yielding beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags