TumbleCatch

Your gateway to endless inspiration

Astronaut - Blog Posts

6 years ago

Sixty Years of Exploration, Innovation, and Discovery!

image

Exactly sixty years ago today, we opened our doors for the first time. And since then, we have opened up a universe of discovery and innovation. 

There are so many achievements to celebrate from the past six decades, there’s no way we can go through all of them. If you want to dive deeper into our history of exploration, check out NASA: 60 Years and Counting. 

In the meantime, take a moonwalk down memory lane with us while we remember a few of our most important accomplishments from the past sixty years!

image

In 1958, President Eisenhower signed the National Aeronautics and Space Act, which effectively created our agency. We officially opened for business on October 1. 

To learn more about the start of our space program, watch our video: How It All Began. 

image

Alongside the U.S. Air Force, we implemented the X-15 hypersonic aircraft during the 1950s and 1960s to improve aircraft and spacecraft. 

The X-15 is capable of speeds exceeding Mach 6 (4,500 mph) at altitudes of 67 miles, reaching the very edge of space. 

Dubbed the “finest and most productive research aircraft ever seen,” the X-15 was officially retired on October 24, 1968. The information collected by the X-15 contributed to the development of the Mercury, Gemini, Apollo, and Space Shuttle programs. 

To learn more about how we have revolutionized aeronautics, watch our Leading Edge of Flight video. 

image

On July 20, 1969, Neil Armstrong and Buzz Aldrin became the first humans to walk on the moon. The crew of Apollo 11 had the distinction of completing the first return of soil and rock samples from beyond Earth. 

Astronaut Gene Cernan, during Apollo 17, was the last person to have walked on the surface of the moon. (For now!)

The Lunar Roving Vehicle was a battery-powered rover that the astronauts used during the last three Apollo missions. 

To learn more about other types of technology that we have either invented or improved, watch our video: Trailblazing Technology.

image

Our long-term Earth-observing satellite program began on July 23, 1972 with the launch of Landsat 1, the first in a long series (Landsat 9 is expected to launch in 2020!) We work directly with the U.S. Geological Survey to use Landsat to monitor and manage resources such as food, water, and forests. 

Landsat data is one of many tools that help us observe in immense detail how our planet is changing. From algae blooms to melting glaciers to hurricane flooding, Landsat is there to help us understand our own planet better. 

Off the Earth, for the Earth.

To learn more about how we contribute to the Earth sciences, watch our video: Home, Sweet Home. 

image

Space Transportation System-1, or STS-1, was the first orbital spaceflight of our Space Shuttle program. 

The first orbiter, Columbia, launched on April 12, 1981. Over the next thirty years, Challenger, Discovery, Atlantis, and Endeavour would be added to the space shuttle fleet. 

Together, they flew 135 missions and carried 355 people into space using the first reusable spacecraft.

image

On January 16, 1978, we selected a class of 35 new astronauts--including the first women and African-American astronauts. 

And on June 18, 1983, Sally Ride became the first American woman to enter space on board Challenger for STS-7. 

To learn more about our astronauts, then and now, watch our Humans in Space video.

image

Everybody loves Hubble! The Hubble Space Telescope was launched into orbit on April 24, 1990, and has been blowing our minds ever since. 

Hubble has not only captured stunning views of our distant stars and galaxies, but has also been there for once-in-a-lifetime cosmic events. For example, on January 6, 2010, Hubble captured what appeared to be a head-on collision between two asteroids--something no one has ever seen before.

In this image, Hubble captures the Carina Nebula illuminating a three-light-year tall pillar of gas and dust. 

To learn more about how we have contributed to our understanding of the solar system and beyond, watch our video: What’s Out There?

image

Cooperation to build the International Space Station began in 1993 between the United States, Russia, Japan, and Canada. 

The dream was fully realized on November 2, 2000, when Expedition 1 crew members boarded the station, signifying humanity’s permanent presence in space!

Although the orbiting lab was only a couple of modules then, it has grown tremendously since then! 

To learn more about what’s happening on the orbiting outpost today, visit the Space Station page.

image

We have satellites in the sky, humans in orbit, and rovers on Mars. Very soon, we will be returning humankind to the Moon, and using it as a platform to travel to Mars and beyond.

And most importantly, we bring the universe to you. 

What are your favorite NASA moments? We were only able to share a few of ours here, but if you want to learn about more important NASA milestones, check out 60 Moments in NASA History or our video, 60 Years in 60 Seconds. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

A room with Earth views! 🌎 Earlier this week, astronaut Ricky Arnold captured this spectacular view of our home planet while he was orbiting at a speed of 17,500 miles per hour. If you’re wondering where in the world this video was taken, it starts as the International Space Station is above San Francisco and moving southward through the Americas. 

Each day, the station completes 16 orbits of our home planet as the six humans living and working aboard our orbiting laboratory conduct important science and research. Their work will not only benefit life here on Earth, but will help us venture deeper into space than ever before.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Astronaut Journal Entry - To Touch the Stars

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

Astronaut Journal Entry - To Touch The Stars

This is my last entry into the Captain’s Log. Drew Feustel, Ricky Arnold and Oleg Artymyev are now in charge after an excellent change of command ceremony where Drew took command of the International Space Station (ISS). We, the crew of the Soyuz MS-07 spacecraft, will undock from the International Space Station on Sunday morning (3 June), reenter the earth’s atmosphere and land on the steppe of Kazakhstan. I will be reunited with my family 24 hours later in Houston, and then begin recovery for living on Earth….with gravity….ugh.  

Astronaut Journal Entry - To Touch The Stars

I would like to thank all of you for following along on this incredible adventure, an adventure that started for me many years ago, and a journey that you have supported each step of the way.

To our Lead Flight Director, Gary Horlacher (Houston) and our Lead Payload Operations Director Patricia Patterson (Huntsville) – what an amazing job. Endless hours, minimal sleep, and herding a cast of thousands to establish the priorities that would define success for our Expedition. Thank you for your service, and for your outstanding leadership.

Astronaut Journal Entry - To Touch The Stars

To our incredibly talented team supporting from Mission Control at all of our centers – Houston, Huntsville, Tsukuba, Cologne, and Moscow – you are incredible professionals without which our human spaceflight program could not exist. Thank you for your dedication, service and professionalism.

Astronaut Journal Entry - To Touch The Stars

My life has been driven by dreams and goals. One of my concerns has always been that following my heart to achieve my dreams would have a deep impact on my family and friends. In the Navy, we endured multiple extended deployments onboard aircraft carriers, constant training cycles in locations away from home, and long days and weekends of training and work when we finally had some time at home. 

In the space program, operational requirements demand the same attention and focus. I have moved my family 12 times in 30 years to make myself available for opportunities to serve that I would have otherwise not been afforded. I have always asked myself – is this worth it? I always assumed “yes”, but could not say definitively in the midst of the journey. My journey has brought my family to several new communities where we needed to learn, adjust, adapt and thrive. We are good at it. My family knows what it is like to live on the East Coast, the West Coast, the desert, the Midwest and the South. My family does not consider varying locations or diverse cultures as barriers to their success, but as opportunities to grow and excel. My children are embarking on their own dreams now, with an energy and focus even greater than I had at their age. My family maintains relationships with lifelong friends all over the country, and now the world. My family believes that dreams are attainable, and that the journey towards their dreams is where the value is found. 

Astronaut Journal Entry - To Touch The Stars

I am very lucky that I have lifelong friends that understand what it was that took me away from my childhood home. I am very lucky to have a family that “gets it”. My wife, Raynette, is amazing at being patient, and at making things work amidst unimaginable chaos. I am very proud of my military family for enduring all that they have over the years. Throughout the sacrifice and endurance, they decided to thrive – typical of our country’s incredible military families. My son, Sean Tingle, wrote and produced the song “To Touch the Stars” in honor of our journey that reached another level of success during ISS Expeditions 54 and 55. After hearing this song, I can definitively say, “Yes, it was worth it”.

To my family, friends and colleagues - THANK YOU for a LIFETIME OF INSPIRATION!

Now, it’s time to get busy again - chop chop hubba bubba!

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Astronaut Journal Entry - The Last Week

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

I can’t believe that Expedition 55 is already over. Today is Sunday, and we will depart the International Space Station (ISS) next Sunday morning (June 3). 

168 days in space. 

There have been many challenging moments, but even more positive highlights of our time on ISS. The new crew from the Soyuz MS-08 spacecraft (Oleg Artymyev, Drew Feustel and Ricky Arnold) joined Norishige Kanai (Nemo), Anton Shkaplerov and I last March. Since then, we have completed two spacewalks, captured and released the SpaceX Dragon-14 cargo craft, captured the Cygnus OA-9 cargo craft and completed a myriad of maintenance and science activities. 

Astronaut Journal Entry - The Last Week

The team on the ground controlling, monitoring, supporting and planning has been amazing. It is always great to work with them, and especially during the moments where the equipment, tools, procedures or crew need help. It is incredible to see how much a good team can accomplish when methodically placing one foot in front of the other. 

I have been lucky in that the first crew (Mark Vande Hei, Joe Acaba and Alexander Misurkin (Sasha)) and the second crew (Drew, Ricky and Oleg) were all amazing to work with. I do believe the planets aligned for my mission onboard ISS. 

Astronaut Journal Entry - The Last Week

Drew and Ricky have been friends forever, and listening to them nip at each other provided a ton of great humor for the ground and for us. Their one-liners to each other reminded me of several scenes from the movie Space Cowboys. 

This a great example that happened as I was writing this log entry:    

Ricky:  Hey Maker, is this your smoothie?   

Maker:  No.  

Ricky:  It must be Drew’s.

 Drew:  Hey Ricky, don’t drink my smoothie.

Ricky:  What smoothie? This one has my name on it (as he writes his name on it).

 Drew:  Okay, Grandpa Underpants, hands off my smoothie.

Ricky:  Okay, Feustelnaut – we have rules around here, so this is my smoothie now!

All:  Much laughing. (To quote my kids: “LOL!”)

One the hardest things to do in space is to maintain positive control of individual items such as tools, spare parts, fasteners, etc. We try very hard not to lose things, but even with all of the attention and positive control, items can still float away and disappear. 

We generally hold items in a crew transfer bag (CTB). Inside the CTB are many items for the system that it supports. When the CTB is opened, the items are free floating inside the bag and tend to escape. It is very difficult to maintain control of the items – especially if they are small, do not have Velcro, or when the daily schedule is so tight that we are rushing to stay on time. We always try to close the CTB’s and Ziploc bags after removing or replacing each item to maintain positive control, but this takes much more time to do for individual items, and if the timeline is tight, we absorb more risk by rushing. 

Astronaut Journal Entry - The Last Week

The same applies for tools, which we usually keep in a Ziploc bag while working on individual systems and tasks. Last month, I was installing a new low temperature cooling loop pump that had failed a month or two earlier. I gathered the needed tools into my modified (with Velcro) Ziploc bag as I always do and floated over to the work area. When I got there, one of the tools that I had gathered was missing. I looked for 30 minutes, and could not find it. Lost items are very hard to find because the items that escape are usually barely moving and blend in with the environment very quickly. A lost item could be right in front of us and we would never see it. 

Astronaut Journal Entry - The Last Week

Our crew, after learning these lessons, decided that when anyone loses something, we would tell the other crew members what we had lost with a general location. This has had a huge impact on finding items. If a different crew member can help within the first minutes of losing an item, the new crew member has an excellent chance of finding the item. We have proven this technique several times during the expedition – and Nemo was the very best at quickly finding lost items. But, in my case, we still could not find the missing tool. Our amazing ground team understood and vectored me to a replacement tool and I finished the job. I spent the next 3 weeks watching, looking and never forgetting about the lost tool. Then, one day last week, Oleg came to the lab and handed us a tool he had found in his Soyuz spacecraft, way on the aft side of the ISS. Amazing. We finally found the tool and I was happy again. This was a lucky ending. ISS has many corners, crevices and hard-to-see areas where missing items could hide and never be found.

Astronaut Journal Entry - The Last Week

We captured a Cygnus cargo craft last Thursday. I was very impressed with the entire team. Our specialists and training professionals in Mission Control did a great job preparing the necessary procedures and making sure we were proficient and ready to conduct operations. The robotic arm is a wonderful system that we could not operate ISS without. Being in space, however, it has some very unique handling qualities. If you think about a spring-mass-damper system just as you did during physics or control theory class, and then remove the damper, you will see a system that is very subject to slow rate oscillations. 

In test pilot terms, damping ratio is very low and the latency is well over a half of a second. Also in test pilot terms – this is a pilot-induced oscillations (PIO) generator. These characteristics require crew to “fly” the robotic arm using open-loop techniques, which requires a huge amount of patience. Test pilots are sometimes not very patient, but understanding the system and practicing with the incredible simulators that our ground team built and maintain help keep our proficiency as high as possible. The capture went flawlessly, and I was very impressed with the professionalism across the board – crew, flight controllers and training professionals – what a great job!

Astronaut Journal Entry - The Last Week

Drew, Ricky and I got to play guitar a few times while on ISS. This was fun! Drew connected pickups to the acoustic guitars and then connected the pickups to our tablets for amplification. I’ve never heard an acoustic guitar sound like an electric guitar amped up for heavy metal before. We had a great jam on the song “Gloria”, and a couple others. Rock on!

Last night we had our last movie night. The entire crew gathered in Node 2 and watched Avengers Infinity Wars on the big screen. We enjoy each other’s company, as we did during Expedition 54, and this was a welcome break from the daily grind of trying to complete the required stowage, maintenance and science activities while preparing for departure.

Our last full weekend here on ISS. I gave myself a haircut. We usually clean our spaces each weekend to make sure we can maintain a decent level of organization, efficiency and morale. This weekend is no different, and it is time for me to vacuum out all of our filters and vents. You’d be amazed at what we find!

The top 5 things I will miss when I am no longer in space:

The incredible team that supports ISS operations from our control centers

The camaraderie onboard ISS

The breathtaking view of the Earth, Moon, Sun and Stars

Floating/flying from location to location with very little effort

Operations in the extreme environment of space

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago
We Asked Real Life Astronauts YOUR Questions! Was Your Submission Sent To Space?

We asked real life astronauts YOUR questions! Was your submission sent to space?

Astronauts Drew Feustel & Ricky Arnold recently recorded answers to your questions in a Video Answer Time session. We collected your questions and sent them to space to be answered by the astronauts on Friday, May 18. We recorded their answers and will post them tomorrow, May 30, here on our Tumblr. 

Was your question selected to be sent to the International Space Station? Check our Tumblr tomorrow, starting at noon EDT to find out!

About the astronauts:

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

Don’t forget check our Tumblr tomorrow at noon EDT to see if your question was answered by real-life astronauts in space. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Astronaut Journal Entry - Week 12

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Wow, time has gone by extremely fast. The mid-deployment phase will be short-lived for me this time, as the new crew (Drew Feustel, Ricky Arnold, and Oleg Artemyev) will arrive on March 23rd, and then we have at least one spacewalk on the 29th, followed by a planned SpaceX Dragon cargo craft arrival on the 4th of April. It’s a little strange being up here with only two other crewmates. We are still very busy, but the overall work effort is half of what it was just a week ago. My crewmate, Nemo (Norishige Kanai), and I are trying to use the time to prepare for the upcoming very busy schedule, and we have been having some great success getting a ton of details taken care of.  

image

Yesterday I had a funny event, though. I was controlling a robot named “Justin” who was located in Munich. The research and demonstration events were so interesting and fun that I offered them my lunch hour to do an additional protocol and have a longer debrief session. The ground team responded happily and accepted the offer – any extra time with crew onboard the International Space Station (ISS) is valuable to our programs. Halfway through the event, the team needed a few minutes to shut down and restart the robot, and I surmised that since I was skipping my break, this would be a good time to use the toilet. And I did, use the toilet. And literally 3 minutes later I returned, waited another 2 minutes for the robot systems to connect, and we began another great session controlling Justin from ISS with no loss to science. 

Later that same day, I was approached by the ground team in Houston (not the test team I was working with in Munich) and queried if something was wrong, and why did I have to take a toilet break while we were executing valuable science? They were concerned that I might have a medical issue, as taking a break in the middle of some very valuable science is not normal for us to do while on ISS. It’s nice to know that we have literally hundreds of highly-trained professionals looking out for us.

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Astronaut Journal Entry - Week 6

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

I did an interview with some students today, and I was asked a two-part question by one of the students. He asked, “What is the most exciting thing about being in space, and how did you keep yourself motivated to get there?”  

image

I answered, “When you were very young, did you ever dream or wish you could fly? We all know it’s impossible, right? Imagine waking up one day and finding out you actually can fly! THAT is exciting! Now consider the contrary thought, what if you grew up and realized that flying wasn’t possible for humans, and you were at peace with this reality, and at peace shedding your childhood dream of flying? You will have several crossroads in your life, and you will have to decide which of these people you want to be. I too am amazed that I had the staying power to continue to dream as I did when I was a child. Words cannot describe how I feel when I fly through the International Space Station every day.”

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Astronaut Journal Entry - Alarms

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

The smoke detectors have been setting off alarms. This happens routinely due to dust circulating in the modules, but every alarm is taken seriously. This is the third time that the alarm has sounded while I was using the Waste & Hygiene Compartment (toilet). I am starting to think that my actions are causing the alarms…. maybe I should change my diet?

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Astronaut Journal Entry - Spacewalking

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

We just finished a 20-hour work day. I spent nearly 11 hours in the spacesuit, and 7 hours and 24 minutes doing a spacewalk. The view was amazing. The changes from day to night, and back to day were phenomenal. 

image

My fellow astronaut Mark Vande Hei and I completed the primary task of replacing the Latching End Effector, or hand, for the robotic arm, but a software glitch kept us waiting and we were unable to complete any get-ahead tasks. I thought we had plenty of time and estimated that we had only been outside for a few hours. I was very surprised to find that we had worked for over 7 hours. Wow, I guess time really does fly by when you are having fun!

image

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Astronaut Journal Entry - Week 3

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Week three. The time is flying by. The SpaceX Dragon cargo craft is 80% loaded. This has been a big effort for the crew as well as our specialists on the ground. Tracking a large matrix of storage locations, special requirements and loading locations is a nightmare, but our team on the ground made it look easy. 

image

Our crew is becoming more versatile and now flexes between operations and science tasking with what is seemingly just a flick of a switch. I had the opportunity to set up our Microgravity Science Glovebox for the Trans-Alloy experiment. Unfortunately, the team had to abort the science run due to high temperatures in the glovebox. 

image

Tomorrow morning, we will remove the science hardware, remove the cooling plugs, and set it all back up again. Reworks like this don’t bother me, and I am happy to do what is needed to reach success. We are on, and sometimes beyond, the frontline of science where lines between science, engineering and operations become very blurry and complex. We have to be flexible!  The International Space Station (ISS) has now entered its 20th year of operations. What an engineering marvel. As with any aging program, we have accumulated an expanse of experience operating in space. As an engineering community, we are much smarter about operating in space than we were 30 years ago when we designed ISS. I will be very encouraged to see our community apply lessons learned as we create new systems to require less training, less maintenance and less logistics.

image

I’ve managed to take a few moments over the last week to take some pictures of Earth. Sunrises are the most beautiful part of the day. Out of total darkness, a thin blue ring begins to form that highlights the Earth’s circumference. At this moment, you can really see how thin our atmosphere is. Within a few minutes, the sun rises on station and highlights the docked vehicles while Earth just below is still in night’s shadow. A few minutes later, ISS is over brightly-lighted ground and water, providing a fresh view of the features below. The promise of a new day is real!

image

The crew managed to have a movie night last night, which provided some good fun and camaraderie. This was a welcome break from the busy routine we endure. Unfortunately, today, I woke to hear that astronaut and moonwalker John Young had passed away. And I also learned that a good friend from the Navy had passed away after a challenging battle with cancer. When he learned he had cancer two years ago, he decided to ignite the afterburners and live every day like there was no tomorrow…he was just as successful in his final days as he was in his previous 50 years. To two remarkable American heroes, thank you for all you have sacrificed and thank you for a lifetime of inspiration. Fair winds and following seas.

Find more ‘Captain’s Log’ entries HERE. 

Follow NASA astronaut Scott Tingle on Instagram and Twitter. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
6 years ago

Astronaut Journal Entry - First Days on Space Station

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

At 22:00, after initial “safing” and unpacking of Soyuz, we finally retired to our quarters. It was very hard to sleep, and I think the busy days leading us to the International Space Station (ISS) were beginning to take their toll. We were scheduled for a full day of work to include familiarization of safety equipment as well as beginning to prepare several science experiments for action. 

image

The SpaceX Dragon cargo craft arrived to ISS a couple days before we did, and its cargo included several experiments that needed to be conducted promptly upon arrival. I was doing a great job of floating from one module to another. Since I was a little behind schedule due to having to learn where everything is, I decided I could speed up my floating to be more expeditious. Well, we know how that usually goes and this time was no exception. I gathered a “bag of knots” (aviator slang for “going really fast”) and began a healthy transition from Node 2 into the Columbus module – where I predictably hit the top of my head. Ouch. The following three days (Tuesday-Saturday) were challenging as we worked to integrate all of our new knowledge and increase our efficiencies. The senior crew was very helpful and understanding. I was very grateful of how they managed our arrival and how they slowly passed down the information we needed to get started. Everything was different from life on Earth. Everything. We quickly figured out that we needed to think differently as we began to adapt to life in space. Drinking water, preparing food, eating food, using the toilet, working, physical training, etc., all different. I had a good handle on the differences and what to expect before I got there. But I didn’t expect that when operations got very busy that my reflexes would respond naturally as they did on Earth. The light bulb came on. I was going to have to move slower and think about everything before I took action. This is why space fliers new to this environment appear to be less efficient than most managers and/or operations planners would like. Adaptation to life in space takes time, and you can’t rush it.

On day three, I finally had the opportunity to look out the Cupola (window facing Earth). My Lord, what a beautiful sight. I could see the sun rising in front of us, darkness below and behind us, and a bright blue ring highlighting the curvature of the Earth as the sun began to rise. Absolutely amazing!

image

We wrapped up our busy week and celebrated Saturday night by enjoying some rehydrated meats and instant juices! Christmas Eve, we had a few tasks that kept us busy, and the same on Christmas Day. Fortunately, we were able to have video conferences with our families over the holiday, and it was really nice to talk with them. We also had a very short celebration for Christmas after work was done. Our wonderful Behavioral Health Professionals at NASA had sent us Christmas stockings in the SpaceX cargo delivery. I added the small gifts that I brought for the crew – superhero socks! Mark got Hulk socks, Nemo (Norishige Kanai) got Spiderman socks, Joe got Deadpool socks, Anton got Superman socks, and Sasha and I got Batman socks. NOW, we are ready to conquer space!  

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago
Ever Want To Ask A Real Life Astronaut A Question? Here’s Your Chance!

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronauts Drew Feustel & Ricky Arnold will be taking your questions in a Video Answer Time session. We’ll collect your questions and send them to space to be answered by the astronauts on Friday, May 18. We’ll record their answers and post them on Wednesday, May 23 here on NASA’s Tumblr. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

And don’t forget to submit your questions by 5 p.m. EDT on Tuesday, May 15 at http://nasa.tumblr.com/ask!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

Astronaut Journal Entry - Launch & Docking

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

The launch went as planned. Our Soyuz spacecraft did a great job getting the three of us to the International Space Station (ISS).  

image

A week later, it all seems like a blur. The bus driver played me a video of my family and friends delivering their good luck messages. After exiting the bus at the launch pad, I was fortunate to have the Soyuz chief designer (Roman) and NASA’s associate administrator for Human Exploration and Operations (Bill Gerstenmaier) walk me to the stairs and elevator that would take us to the top of the rocket for boarding. The temperature at the pad was approximately -17 degrees centigrade, and we were wearing the Russian Polar Bear suits over our spacesuits in order to stay warm. Walking in these suits is a little hard, and I was happy to have Roman and Bill helping me. 

image

We walked into the fog created by the systems around the rocket, climbed the ladder, and waved goodbye. My last words before launch were to Bill, “Boiler Up!”. Bill is a fellow and very well-known Boilermaker. We strapped in, and the launch and docking were nominal. But I will add that the second stage cutoff and separation, and ignition of the third stage was very exciting. We were under approximately 4 Gs when the engine cutoff, which gave us a good jolt forward during the deceleration and then a good jolt back into the seat after the third stage ignited. I looked at Anton and we both began to giggle like school children.

We spent two days in orbit as our phase angle aligned with ISS. Surprisingly, I did not feel sick. I even got 4 hours of sleep the first night and nearly 6 hours the second night. Having not been able to use my diaper while sitting in the fetal position during launch, it was nice to get out of our seats and use the ACY (Russian toilet). Docking was amazing. I compared it to rendezvousing on a tanker in a fighter jet, except the rendezvous with ISS happened over a much larger distance. As a test pilot, it was very interesting to watch the vehicle capture and maintain the centerline of ISS’s MRM-1 docking port as well as capturing and maintaining the required speed profile. 

image

Just like landing at the ship, I could feel the vehicle’s control system (thrusters) making smaller and faster corrections and recorrections. In the flight test world, this is where the “gains” increase rapidly and where any weaknesses in the control system will be exposed. It was amazing to see the huge solar arrays and tons of equipment go by my window during final approach. What an engineering marvel the ISS is. Smooth sailing right into the docking port we went!  

image

About an hour later, after equalizing pressures between the station and Soyuz, we opened the hatch and greeted our friends already onboard. My first view of the inside of the space station looked pretty close to the simulators we have been training in for the last several years. My first words were, “Hey, what are you guys doing at Building 9?”. Then we tackled each other with celebratory hugs!

image

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

Astronaut Journal Entry - Pre-Launch

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry written by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Our crew just finished the final training event before the launch. Tomorrow, at 13:20 local time (Baikonur), we will strap the Soyuz MS-07 spacecraft to our backs and fly it to low Earth orbit. We will spend 2.5 days in low Earth orbit before docking to the MRM-1 docking port on the International Space Station (ISS). There we will begin approximately 168 days of maintenance, service and science aboard one of the greatest engineering marvels that humans have ever created.

image

Today was bittersweet. Ending a 2-year process of intense training was welcomed by all of us. We are very tired. Seeing our families for the last time was difficult. I am pretty lucky, though. My wife, Raynette, and the kids have grown up around military service and are conditioned to endure the time spent apart during extended calls-to-duty. We are also very much anticipating the good times we will have upon my return in June. Sean and Amy showed me a few videos of them mucking it up at Red Square before flying out to Baikonur. Eric was impressed with the Russian guards marching in to relieve the watch at Red Square. Raynette was taking it all in stride and did not seem surprised by any of it. I think I might have a family of mutants who are comfortable anywhere. Nice! And, by the way, I am VERY proud of all of them!

image

Tomorrow’s schedule includes a wake-up at 04:00, followed by an immediate medical exam and light breakfast. Upon returning to our quarters, we will undergo a few simple medical procedures that should help make the 2.5-day journey to ISS a little more comfortable. I’ve begun prepping with motion sickness medication that should limit the nausea associated with the first phases of spaceflight. I will continue this effort through docking. This being my first flight, I’m not sure how my body will respond and am taking all precautions to maintain a good working capability. The commander will need my help operating the vehicle, and I need to not be puking into a bag during the busy times. We suit up at 09:30 and then report to the State Commission as “Готовы к Полёту”, or “Ready for Flight”. We’ll enter the bus, wave goodbye to our friends and family, and then head out to the launch pad. Approximately 2 kilometers from the launch pad, the bus will stop. 

image

The crew will get out, pee on the bus’s tire, and then complete the last part of the drive to the launch pad. This is a traditional event first done by Yuri Gagarin during his historic first flight and repeated in his honor to this day. We will then strap in and prepare the systems for launch. Next is a waiting game of approximately 2 hours. Ouch. The crew provided five songs each to help pass the time. My playlist included “Born to Run” (Springsteen), “Sweet Child O’ Mine” (Guns and Roses), “Cliffs of Dover” (Eric Johnson), “More than a Feeling” (Boston), and “Touch the Sky” (Rainbow Bridge, Russian). Launch will happen precisely at 13:20.

image

I think this sets the stage. It’s 21:30, only 6.5 hours until duty calls. Time to get some sleep. If I could only lower my level of excitement!

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

5 Myths About Becoming a Flight Director

Have you ever wondered if you have what it takes to become a NASA Flight Director? 

They are historically well known for making difficult calls and guiding the crew through "Houston, we've had a problem" situations, but in all spaceflight operations, they are ultimately responsible for the success of the mission.

We're looking for a new class of Flight Directors to join our team, and there are a few things to know.

Here are a few myths about becoming a Flight Director:

MYTH: You have to have already been a flight controller in Mission Control at NASA to become a flight director.

FACT: Although many flight directors have previously been NASA flight controllers, that is not a prerequisite to apply. The necessary experience could come from the military, other spaceflight organizations or areas that operate in similar high-stakes conditions.

image

MYTH: You have to already have a special spaceship flying license to apply.

FACT: The only place to get certified is on the job at NASA. Once chosen, the new flight directors will receive training on flight control and vehicle systems, as well as operational leadership and risk management.

image

MYTH: All flight directors have advanced degrees like, a PhD.

FACT: While a Bachelor's degree in engineering, biological science, physical science, computer science or mathematics from an accredited university is necessary, an advanced degree is not required to become a flight director.

image

MYTH: Flight directors are required to have experience in the space industry.

FACT: While you need at least three years of related, progressively responsible professional experience to apply, it can come from a variety of industries as long as it represents time-critical decision-making experience in high-stress, high-risk environments.

image

MYTH: Only astronauts become flight directors and vice versa.

FACT: To date, only one astronaut, T.J. Creamer, has become a flight director, and no flight directors have become astronauts. However, members of the flight controller teams have become astronauts. The "capsule communicator," or CAPCOM, role in Mission Control is more often filled by astronauts because the CAPCOM is the one responsible for relaying the flight director's decisions to the astronauts in space.

image

Okay, but What are the requirements?

Basic Qualification Requirements

image

Applicants must meet the following minimum requirements before submitting an application:

Be a U.S. citizen.

Have a Bachelor's degree from an accredited institution in engineering, biological science, physical science, computer science or math.

Have at least three years of related, progressively responsible professional experience.

Applications for our next Flight Director class open on Dec. 3, 2021 and close Dec. 16, 2021! Visit: go.nasa.gov/FlightDirector

Learn more about what Flight Directors do with our Everything About Mission Control Houston video featuring Flight Director Mary Lawrence!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Science-Heavy SpaceX Dragon Headed to Space Station

Heads up: a new batch of science is headed to the International Space Station aboard the SpaceX Dragon on April 2, 2018. Launching from Florida's Cape Canaveral Air Force Station atop a Falcon 9 rocket, this fire breathing (well, kinda…) spacecraft will deliver science that studies thunderstorms on Earth, space gardening, potential pathogens in space, new ways to patch up wounds and more.

image

Let's break down some of that super cool science heading 250 miles above Earth to the orbiting laboratory:

Sprites and Elves in Space

Atmosphere-Space Interactions Monitor (ASIM) experiment will survey severe thunderstorms in Earth's atmosphere and upper-atmospheric lightning, or transient luminous events. 

image

These include sprites, flashes caused by electrical break-down in the mesosphere; the blue jet, a discharge from cloud tops upward into the stratosphere; and ELVES, concentric rings of emissions caused by an electromagnetic pulse in the ionosphere.

Here's a graphic showing the layers of the atmosphere for reference:

image

Metal Powder Fabrication

Our Sample Cartridge Assembly (MSL SCA-GEDS-German) experiment will determine underlying scientific principles for a fabrication process known as liquid phase sintering, in microgravity and Earth-gravity conditions.

image

Science term of the day: Liquid phase sintering works like building a sandcastle with just-wet-enough sand; heating a powder forms interparticle bonds and formation of a liquid phase accelerates this solidification, creating a rigid structure. But in microgravity, settling of powder grains does not occur and larger pores form, creating more porous and distorted samples than Earth-based sintering. 

Sintering has many applications on Earth, including metal cutting tools, automotive engine connecting rods, and self-lubricating bearings. It has potential as a way to perform in-space fabrication and repair, such as building structures on the moon or creating replacement parts during extraterrestrial exploration.

Plants in space! It's l[a]unch time!

Understanding how plants respond to microgravity and demonstrating reliable vegetable production in space represent important steps toward the goal of growing food for future long-duration missions. The Veggie Passive Orbital Nutrient Delivery System (Veggie PONDS) experiment will test a passive nutrient delivery system in the station's Veggie plant growth facility by cultivating lettuce and mizuna greens for harvest and consumption on orbit.

The PONDS design features low mass and low maintenance, requires no additional energy, and interfaces with the Veggie hardware, accommodating a variety of plant types and growth media.

image

Quick Science Tip: Download the Plant Growth App to grow your own veggies in space! Apple users can download the app HERE! Android users click HERE!

Testing Materials in Space

The Materials ISS Experiment Flight Facility (MISSE-FF) experiment will provide a unique platform for testing how materials, coatings and components react in the harsh environment of space.

image

A continuation of a previous experiment, this version's new design eliminates the need for astronauts to perform spacewalks for these investigations. New technology includes power and data collection options and the ability to take pictures of each sample on a monthly basis, or more often if required. The testing benefits a variety of industries, including automotive, aeronautics, energy, space, and transportation.

New Ways to Develop Drugs in Space

Science-Heavy SpaceX Dragon Headed To Space Station

Microgravity affects movement and effectiveness of drugs in unique ways. Microgravity studies already have resulted in innovative medicines to treat cancer, for example. The Metabolic Tracking investigation determines the possibility of developing improved drugs in microgravity, using a new method to test the metabolic impacts of drug compounds. This could lead to more effective, less expensive drugs.

Follow @ISS_Research on Twitter for your daily dose of nerdy, spacey goodness.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Spacewalk Recap Told in GIFs

Friday, Oct. 20, NASA astronauts Randy Bresnik and Joe Acaba ventured outside the International Space Station for a 6 hour and 49 minute spacewalk. Just like you make improvements to your home on Earth, astronauts living in space periodically go outside the space station to make updates on their orbiting home.

During this spacewalk, they did a lot! Here’s a recap of their day told in GIFs…

All spacewalks begin inside the space station. Astronauts Paolo Nespoli and Mark Vande Hei helped each spacewalker put on their suit, known as an Extravehicular Mobility Unit (EMU).

image

They then enter an airlock and regulate the pressure so that they can enter the vacuum of space safely. If they did not regulate the pressure safely, the astronauts could experience something referred to as “the bends” – similar to scuba divers.

Once the two astronauts exited the airlock and were outside the space station, they went to their respective work stations.

image

Bresnik replaced a failed fuse on the end of the Dextre robotic arm extension, which helps capture visiting vehicles.

image

During that time, Acaba set up a portable foot restraint to help him get in the right position to install a new camera.

image

While he was getting set up, he realized that there was unexpected wearing on one of his safety tethers. Astronauts have multiple safety mechanisms for spacewalking, including a “jet pack” on their spacesuit. That way, in the unlikely instance they become untethered from the station, the are able to propel back to safety.

image

Bresnik was a great teammate and brought Acaba a spare safety tether to use.

image

Once Acaba secured himself in the foot restraint that was attached to the end of the station’s robotic arm, he was maneuvered into place to install a new HD camera. Who was moving the arm? Astronauts inside the station were carefully moving it into place!

And, ta da! Below you can see one of the first views from the new enhanced HD camera…(sorry, not a GIF).

image

After Acaba installed the new HD camera, he repaired the camera system on the end of the robotic arm’s hand. This ensures that the hand can see the vehicles that it’s capturing.

image

Bresnik, completed all of his planned tasks and moved on to a few “get ahead” tasks. He first started removing extra thermal insulation straps around some spare pumps. This will allow easier access to these spare parts if and when they’re needed in the future.

image

He then worked to install a new handle on the outside of space station. That’s a space drill in the above GIF. 

image

After Acaba finished working on the robotic arm’s camera, he began greasing bearings on the new latching end effector (the arm’s “hand”), which was just installed on Oct. 5.

image

The duo completed all planned spacewalk tasks, cleaned up their work stations and headed back to the station’s airlock. 

image

Once safely inside the airlock and pressure was restored to the proper levels, the duo was greeted by the crew onboard. 

image

They took images of their spacesuits to document any possible tears, rips or stains, and took them off. 

image

Coverage ended at 2:36 p.m. EDT after 6 hours and 49 minutes. We hope the pair was able to grab some dinner and take a break!

You can watch the entire spacewalk HERE, or follow @Space_Station on Twitter and Instagram for regular updates on the orbiting laboratory. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Coffee in Space: Keeping Crew Members Grounded in Flight

Happy National Coffee Day, coffee lovers! 

On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.

image

Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.

image

The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!

image

The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.

image

On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.

image

The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.

image
image

Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts. 

image

Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.

image

We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

New Research Heading to Earth’s Orbiting Laboratory

It’s a bird! It’s a plane! It’s a…dragon? A SpaceX Dragon spacecraft is set to launch into orbit atop the Falcon 9 rocket toward the International Space Station for its 12th commercial resupply (CRS-12) mission August 14 from our Kennedy Space Center in Florida.

image

It won’t breathe fire, but it will carry science that studies cosmic rays, protein crystal growth, bioengineered lung tissue.

image

Here are some highlights of research that will be delivered:

I scream, you scream, we all scream for ISS-CREAM! 

Cosmic Rays, Energetics and Mass, that is! Cosmic rays reach Earth from far outside the solar system with energies well beyond what man-made accelerators can achieve. The Cosmic Ray Energetics and Mass (ISS-CREAM) instrument measures the charges of cosmic rays ranging from hydrogen to iron nuclei. Cosmic rays are pieces of atoms that move through space at nearly the speed of light

image

The data collected from the instrument will help address fundamental science questions such as:

Do supernovae supply the bulk of cosmic rays?

What is the history of cosmic rays in the galaxy?

Can the energy spectra of cosmic rays result from a single mechanism?

ISS-CREAM’s three-year mission will help the scientific community to build a stronger understanding of the fundamental structure of the universe.

Space-grown crystals aid in understanding of Parkinson’s disease

The microgravity environment of the space station allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. 

image

Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, the Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) investigation will utilize the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease.

image

Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and could aid in the development of therapies against this target.

Mice Help Us Keep an Eye on Long-term Health Impacts of Spaceflight

Our eyes have a whole network of blood vessels, like the ones in the image below, in the retina—the back part of the eye that transforms light into information for your brain. We are sending mice to the space station (RR-9) to study how the fluids that move through these vessels shift their flow in microgravity, which can lead to impaired vision in astronauts.

image

By looking at how spaceflight affects not only the eyes, but other parts of the body such as joints, like hips and knees, in mice over a short period of time, we can develop countermeasures to protect astronauts over longer periods of space exploration, and help humans with visual impairments or arthritis on Earth.

Telescope-hosting nanosatellite tests new concept

The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging system payload, including an off-the-shelf telescope. This investigation validates the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations, such as tracking severe weather and detecting natural disasters.

image

Sponsored by the ISS National Laboratory, the overall mission goal for this investigation is to demonstrate that small satellites are viable platforms for providing critical path support to operations and hosting advanced payloads.

Growth of lung tissue in space could provide information about diseases

The Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) uses the microgravity environment of space to test strategies for growing new lung tissue. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue.

image

The goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

These crazy-cool investigations and others launching aboard the next SpaceX #Dragon cargo spacecraft on August 14. They will join many other investigations currently happening aboard the space station. Follow @ISS_Research on Twitter for more information about the science happening on 250 miles above Earth on the space station.  

Watch the launch live HERE starting at 12:20 p.m. EDT on Monday, Aug. 14!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Our pale blue dot, planet Earth, is seen in this video captured by NASA astronaut Jack Fischer from his unique vantage point on the International Space Station. From 250 miles above our home planet, this time-lapse imagery takes us over the Pacific Ocean’s moon glint and above the night lights of San Francisco, CA. The thin hue of our atmosphere is visible surrounding our planet with a majestic white layer of clouds sporadically seen underneath.

The International Space Station is currently home to 6 people who are living and working in microgravity. As it orbits our planet at 17,500 miles per hour, the crew onboard is conducting important research that benefits life here on Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
We’re Studying A New Method Of Water Recycling And Carbon Dioxide Removal That Relies On Specific Geometric

We’re studying a new method of water recycling and carbon dioxide removal that relies on specific geometric shapes and fluid dynamics, rather than complex machinery, in an effort to help build better life support systems for spacecraft. The research could also teach us more about the water processing approaches we take on Earth. Here, NASA astronaut Jack Fischer, is working with the Capillary Structures for Exploration Life Support (Capillary Structures) investigation capillary sorbent hardware that is made up of 3D printed contractors that are supported by tubing, valves and a pump.

Learn more about how this highly interactive investigation works, and what we could learn from the results HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
Freaky Fast And Really Awesome! NASA Astronaut Jack Fischer Posted This GIF To His Social Media Tuesday

Freaky fast and really awesome! NASA astronaut Jack Fischer posted this GIF to his social media Tuesday saying, “I was checking the view out the back window & decided to take a pic so you can see proof of our ludicrous speed! #SpaceIsAwesome”.

In case you didn’t know, the International Space Station travels 17,500 miles per hour as it orbits 250 miles above the Earth.

Currently, three humans are living and working there, conducting important science and research. The orbiting laboratory is home to more than 250 experiments, including some that are helping us determine the effects of microgravity on the human body. Research on the station will not only help us send humans deeper into space than ever before, including to Mars, but also benefits life here on Earth.

Follow NASA astronaut Jack Fischer on Instagram and Twitter. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Five Ways the International Space Station’s National Lab Enables Commercial Research

A growing number of commercial partners use the International Space Station National Lab. With that growth, we will see more discoveries in fundamental and applied research that could improve life on the ground.

image

Space Station astronaut Kate Rubins was the first person to sequence DNA in microgravity.

Since 2011, when we engaged the Center for the Advancement of Science in Space (CASIS) to manage the International Space Station (ISS) National Lab, CASIS has partnered with academic researchers, other government organizations, startups and major commercial companies to take advantage of the unique microgravity lab. Today, more than 50 percent of CASIS’ experiments on the station represent commercial research.

Here’s a look at five ways the ISS National Lab is enabling new opportunities for commercial research in space.

1. Supporting Commercial Life Sciences Research

image

One of the main areas of focus for us in the early origins of the space station program was life sciences, and it is still a major priority today. Studying the effects of microgravity on astronauts provides insight into human physiology, and how it evolves or erodes in space. CASIS took this knowledge and began robust outreach to the pharmaceutical community, which could now take advantage of the microgravity environment on the ISS National Lab to develop and enhance therapies for patients on Earth. Companies such as Merck, Eli Lilly & Company, and Novartis have sent several experiments to the station, including investigations aimed at studying diseases such as osteoporosis, and examining ways to enhance drug tablets for increased potency to help patients on Earth. These companies are trailblazers for many other life science companies that are looking at how the ISS National Lab can advance their research efforts.

2. Enabling Commercial Investigations in Material and Physical Sciences

image

Over the past few years, CASIS and the ISS National Lab also have seen a major push toward material and physical sciences research by companies interested in enhancing their products for consumers. Examples range from Proctor and Gamble’s investigation aimed at increasing the longevity of daily household products, to Milliken’s flame-retardant textile investigation to improve protective clothing for individuals in harm’s way, and companies looking to enhance materials for household appliances. Additionally, CASIS has been working with a variety of companies to improve remote sensing capabilities in order to better monitor our oceans, predict harmful algal blooms, and ultimately, to better understand our planet from a vantage point roughly 250 miles above Earth.

3. Supporting Startup Companies Interested in Microgravity Research 

image

CASIS has funded a variety of investigations with small startup companies (in particular through seed funding and grant funding from partnerships and funded solicitations) to leverage the ISS National Lab for both research and test-validation model experiments. CASIS and The Boeing Company recently partnered with MassChallenge, the largest startup accelerator in the world, to fund three startup companies to conduct microgravity research.

4. Enabling Validation of Low-Earth Orbit Business Models 

image

The ISS National Lab helps validate low-Earth orbit business models. Companies such as NanoRacks, Space Tango, Made In Space, Techshot, and Controlled Dynamics either have been funded by CASIS or have sent instruments to the ISS National Lab that the research community can use, and that open new channels for inquiry. This has allowed the companies that operate these facilities to validate their business models, while also building for the future beyond station.

5. Demonstrating the Commercial Value of Space-based Research

We have been a key partner in working with CASIS to demonstrate to American businesses the value of conducting research in space. Through outreach events such as our Destination Station, where representatives from the International Space Station Program Science Office and CASIS select cities with several major companies and meet with the companies to discuss how they could benefit from space-based research. Over the past few years, this outreach has proven to be a terrific example of building awareness on the benefits of microgravity research.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Meet America’s #NewAstronauts

We’re so excited to introduce America’s new astronauts! After evaluating a record number of applications, we’re proud to present our 2017 astronaut class!

Meet America’s #NewAstronauts

These 12 new astronaut candidates were chosen from more than 18,300 people who submitted applications from December 2015 to February 2016. This was more than double the previous record of 8,000 set in 1978.

image

Meet them…

Kayla Barron

image

This Washington native graduated from the U.S. Naval Academy with a Bachelor’s degree in Systems Engineering. A Gates Cambridge Scholar, Barron earned a Master’s degree in Nuclear Engineering from the University of Cambridge.

She enjoys hiking, backpacking, running and reading.

Zena Cardman

image

Zena is a native of Virginia and completed a Bachelor of Science degree in Biology and Master of Science degree in Marine Sciences at The University of North Carolina, Chapel Hill. Her research has focused on microorganisms in subsurface environments, ranging from caves to deep sea sediments.

In her free time, she enjoys canoeing, caving, raising backyard chickens and glider flying.

Raja Chari

image

Raja is an Iowa native and graduated from the U.S. Air Force Academy in 1999 with Bachelor’s degrees in Astronautical Engineering and Engineering Science. He continued on to earn a Master’s degree in Aeronautics and Astronautics from Massachusetts Institute of Technology and graduated from the U.S. Naval Test Pilot School.

He has accumulated more than 2,000 hours of flight time in the F-35, F-15, F-16 and F-18 including F-15E combat missions in Operation Iraqi Freedom.

Matthew Dominick

image

This Colorado native earned a Bachelor of Science in Electrical Engineering from the University of San Diego and a Master of Science degree in Systems Engineering from the Naval Postgraduate School. He graduated from U.S. Naval Test Pilot School.

He has more than 1,600 hours of flight time in 28 aircraft, 400 carrier-arrested landigns and 61 combat missions.

Bob Hines

image

Bob is a Pennsylvania native and earned a Bachelor’s degree in Aerospace Engineering from Boston University. He is a graduate of the U.S. Air Force Test Pilot School, where he earned a Master’s degree in Flight Test Engineering. He continued on to earn a Master’s degree in Aerospace Engineering from the University of Alabama.

During the last five years, he has served as a research pilot at NASA’s Johnson Space Center.

Warren Hoburg

image

Nicknamed “Woody”, this Pennsylvania native earned a Bachelor’s degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology (MIT) and a Doctorate in Electrical Engineering and Computer Science from the University of California, Berkley.

He is an avid rock climber, moutaineer and pilot.

Jonny Kim

image

This California native trained and operated as a Navy SEAL, completing more than 100 combat operations and earning a Silver Star and Bronze Star with Combat “V”. Afterward, he went on to complete a degree in Mathematics at the University of San Diego and a Doctorate of Medicine at Harvard Medical School.

His interests include spending time with his family, volunteering with non-profit vertern organizations, academic mentoring, working out and learning new skills.

Robb Kulin

image

Robb is an Alaska native and earned a Bachelor’s degree in Mechanical Engineering from the University of Denver, before going on to complete a Master’s degree in Materials Science and a Doctorate in Engineering at the University of California, San Diego.

He is a private pilot and also enjoys playing piano, photography, packrafting, running, cycling, backcountry skiing and SCUBA diving.

Jasmin Moghbeli

image

This New York native earned a Bachlor’s degree in Aerospace Engineering with Information Technology at the Massachusetts Institute of Technology, followed by a Master’s degree in Aerospace Engineering from the Naval Postgraduate School.

She is also a distinguished graduate of the U.S. Naval Test Pilot School and has accumulated mofre than 1,600 hours of flight time and 150 combat missions.

Loral O’Hara

image

This Texas native earned a Bachelor of Science degree in Aerospace Engineering at the University of Kansas and a Master of Science degree in Aeronautics and Astronautics from Purdue University.

In her free time, she enjoys working in the garage, traveling, surfing, diving, flying, sailing, skiing, hiking/orienteering, caving, reading and painting.

Frank Rubio

image

Frank is a Florida native and graduated from the U.S. Military Academy and earned a Doctorate of Medicine from the Uniformed Services University of the Health Sciences.

He is a board certified family physician and flight surgeon. At the time of his selection, he was serving in the 10th Special Forces Group (Airborne).

Jessica Watkins

image

This Colorado native earned a Bachelor’s degree in Geological and Environmental Sciences at Stanford University, and a Doctorate in Geology from the University of California, Los Angeles (UCLA).

She enjoys soccer, rock climbing, skiing and creative writing.

image

After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

10 Questions About the 2017 Astronaut Class

We will select between eight and 14 new astronaut candidates from among a record-breaking applicant class of more than 18,300, almost three times the number of applications the agency received in 2012 for the recent astronaut class, and far surpassing the previous record of 8,000 in 1978.

10 Questions About The 2017 Astronaut Class

The candidates will be announced at an event at our Johnson Space Center in Houston, Texas at 2 p.m. EDT on June 7. You can find more information on how to watch the announcement HERE.

1. What are the qualifications for becoming an astronaut?

10 Questions About The 2017 Astronaut Class

Applicants must meet the following minimum requirements before submitting an application.

Bachelor’s degree from an accredited institution in engineering, biological science, physical science, computer science or mathematics. 

Degree must be followed by at least 3 years of related, progressively responsible, professional experience or at least 1,000 hours of pilot-in-command time in jet aircraft

Ability to pass the NASA Astronaut physical.

For more information, visit: https://astronauts.nasa.gov/content/faq.htm

2. What have selections looked like in the past?

10 Questions About The 2017 Astronaut Class

There have been 22 classes of astronauts selected from the original “Mercury Seven” in 1959 to the most recent 2017 class. Other notable classes include:

The fourth class in 1965 known as “The Scientists: because academic experience was favored over pilot skills. 

The eighth class in 1978 was a huge step forward for diversity, featuring the first female, African American and Asian American selections.

The 16th class in 1996 was the largest class yet with 44 members – 35 U.S. astronauts and 9 international astronauts. They were selected for the frequent Space Shuttle flights and the anticipated need for International Space Station crewmembers.

The 21st class in 2013 was the first class to have 50/50 gender split with 4 female members and 4 male members.

3. What vehicles will they fly in?

10 Questions About The 2017 Astronaut Class

They could be assigned on any of four different spacecraft: the International Space Station, our Orion spacecraft for deep space exploration or one of two American-made commercial crew spacecraft currently in development – Boeing’s CST-199 Starliner or the SpaceX Crew Dragon.

4. Where will they go?

10 Questions About The 2017 Astronaut Class

These astronauts will be part of expanded crews aboard the space station that will significantly increase the crew time available to conduct the important research and technology demonstrations that are advancing our knowledge for missions farther into space than humans have gone before, while also returning benefits to Earth. They will also be candidates for missions beyond the moon and into deep space aboard our Orion spacecraft on flights that help pave the way for missions to Mars.

5. What will their roles be?

10 Questions About The 2017 Astronaut Class

After completing two years of general training, these astronaut candidates will be considered full astronauts, eligible to be assigned spaceflight missions. While they wait for their turn, they will be given duties within the Astronaut Office at Johnson Space Center. Technical duties can range from supporting current missions in roles such as CAPCOM in Mission Control, to advising on the development of future spacecraft.

6. What will their training look like?

10 Questions About The 2017 Astronaut Class

The first two years of astronaut candidate training will focus on the basic skills astronauts need. They’ll practice for spacewalks in Johnson’s 60-foot deep swimming pool, the Neutral Buoyancy Lab, which requires SCUBA certification. They’ll also simulate bringing visiting spacecraft in for a berthing to the space station using its robotic arm, Canadarm2, master the ins and outs of space station system and learn Russian. 

10 Questions About The 2017 Astronaut Class

And, whether they have previous experience piloting an aircraft of not, they’ll learn to fly our fleet of T-38s. In addition, they’ll perfect their expeditionary skills, such as leadership and fellowship, through activities like survival training and geology treks.

7.  What kinds of partners will they work with?

10 Questions About The 2017 Astronaut Class

They will join a team that supports missions going on at many different NASA centers across the country, but they’ll also interact with commercial partners developing spaceflight hardware. In addition, they will work with our international partners around the globe: ESA (the European Space Agency, the Canadian Space Agency, the Japan Aerospace Exploration Agency and the Russian space agency, Roscosmos.

8. How does the selection process work?

10 Questions About The 2017 Astronaut Class

All 18,353 of the applications submitted were reviewed by human resources experts to determine if they met the basic qualifications. Those that did were then each reviewed by a panel of about 50 people, made up primarily of current astronauts. Called the Astronaut Rating Panel, that group narrowed to applicants down to a few hundred of what they considered the most highly qualified individuals, whose references were then checked.

10 Questions About The 2017 Astronaut Class

From that point, a smaller group called the Astronaut Selection Board brought in the top 120 applicants for an intense round of interviews and some initial medical screening tests. That group is further culled to the top 50 applicants afterward, who are brought back for a second round of interviews and additional screening. The final candidates are selected from that group.

9. How do they get notified?

10 Questions About The 2017 Astronaut Class

Each applicant selected to become an astronaut receives a phone call from the head of the Flight Operations Directorate at our Johnson Space Center and the chief of the astronaut office. They’re asked to share the good news with only their immediate family until their selection has been officially announced.

10. How does the on boarding process work?

10 Questions About The 2017 Astronaut Class

Astronaut candidates will report for duty at Johnson Space Center in August 2017, newly fitted flight suits in tow, and be sworn into civil service. Between their selection and their report for duty, they will make arrangements to leave their current positions and relocate with their family to Houston, Texas.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

5 Training Requirements for New Astronauts

After evaluating a record number of applications, we will introduce our newest class of astronaut candidates on June 7!

image

Upon reporting to duty at our Johnson Space Center in Houston, the new astronaut candidates will complete two years of training before they are eligible to be assigned to a mission. 

Here are the five training criteria they must check off to graduate from astronaut candidate to astronaut:

1. T-38 Jets

image

Astronauts have been training in T-38 jets for more than 35 years because the sleek, white jets require crew members to think quickly in dynamic situations and to make decisions that have real consequences. This type of mental experience is critical to preparing for the rigors of spaceflight. To check off this training criteria, astronaut candidates must be able to safely operate in the T-38 as either a pilot or back seater.

2. International Space Station Systems

image

We are currently flying astronauts to the International Space Station every few months. Astronauts aboard the space station are conducting experiments benefitting humanity on Earth and teaching us how to live longer in space. Astronaut candidates learn to operate and maintain the complex systems aboard the space station as part of their basic training.

3. Spacewalks

image

Spacewalks are the hardest thing, physically and mentally, that astronauts do. Astronaut candidates must demonstrate the skills to complete complex spacewalks in our Neutral Buoyancy Laboratory (giant pool used to simulate weightlessness).  In order to do so, they will train on the life support systems within the spacesuit, how to handle emergency situations that can arise and how to work effectively as a team to repair the many critical systems aboard the International Space Station to keep it functioning as our science laboratory in space.  

4. Robotics

image

Astronaut candidates learn the coordinate systems, terminology and how to operate the space station’s robotic arm. They train in Canada for a two week session where they develop more complex robotics skills including capturing visiting cargo vehicles with the arm. The arm, built by the Canadian Space Agency, is capable of handling large cargo and hardware, and helped build the entire space station. It has latches on either end, allowing it to be moved by both flight controllers on the ground and astronauts in space to various parts of the station.

5. Russian Language

image

The official languages of the International Space Station are English and Russian, and all crewmembers – regardless of what country they come from – are required to know both. NASA astronauts train with their Russian crew mates and launch on the Russian Soyuz vehicle, so it makes sense that they should be able to speak Russian. Astronaut candidates start learning the language at the beginning of their training. They train on this skill every week, as their schedule allows, to keep in practice.

Now, they are ready for their astronaut pin!

After completing this general training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.

image

Watch the Astronaut Announcement LIVE!

We will introduce our new astronaut candidates at 2 p.m. EDT Wednesday, June 7, from our Johnson Space Center in Houston. 

Watch live online at nasa.gov/live or on NASA’s Facebook Page. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

5 Times Astronaut Jack Fischer Said Something in Space Was “Awesome”

Meet astronaut Jack Fischer…

image

He was selected as a NASA astronaut in July 2009, and is currently living and working in space for his first time. As you can imagine, going to space for the first time is both nerve-wracking and exciting. You may or may not know just how excited he actually is to be 250 miles above the Earth...To communicate his elation, he has frequently used some version of the word “awesome”.

FYI, that’s a picture of Fischer about to eat a coffee ball on station. For more on his opinion of coffee balls, check THIS out.

Let’s take a look at a few times astronaut Jack Fischer said something in space was “awesome”…

1. Burrito Smothered in Awesomesauce 

Immediately following the hatch opening to the International Space Station and Jack Fischer arriving at his new orbital home, they had the chance to speak to their families. During this time, he explained to his wife what it was like to be in space...obviously using the word awesome in the process: “It’s a burrito of awesomeness, smothered in awesomesauce baby, it’s so beautiful!”

2. Awesome Views from Space

image

Astronauts commonly say that one of the best parts of being on space station is the view. Earth from 250 miles above can look stunning...or as Fischer puts it...awesome!

3. Tornado of Awesomeness 

Fischer shared this video on his Twitter account on May 6 saying, “Sometimes, on a weekend, you have to spin about wildly…we can call it a tornado of awesomeness—because weightlessness is awesome!”

4. Awesome #SpaceSelfie

image

This selfie, taken during Fischer’s first-ever spacewalk is AWESOME and shows his cheesing smile from behind his spacesuit helmet. Check out a recap of Fischer’s first spacewalk, conducted on May 12, HERE. 

5. Fondue Pot Bubbling Over with Awesome Sauce

In this video, also taken during Fischer’s first spacewalk on May 12, you can hear his real-time reaction to seeing the Earth from outside the space station. Describing it like a “Ginormous fondue pot, bubbling over with piping hot awesomesauce.”

Why the Burrito References?

image

You might be wondering where all this burrito talk comes from. In a pre-flight interview, Fischer explained that he doesn’t particularly like sweets...so for his birthday, his wife will commonly make him bean burritos smothered in green chili and cheese! Watch the full video for 5 facts you may not know about Fischer HERE.

Want more awesomeness from Jack Fischer? Follow him on social media for regular, awesome updates!

Twitter | Facebook | Instagram

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Thanks For All Of The Great Questions!  Follow Me At @Astro_Jeanette On Twitter and @Jeanette.Epps

Thanks for all of the great questions!  Follow me at @Astro_Jeanette on Twitter and @Jeanette.Epps on Instagram, and follow the International Space Station on Twitter, Facebook, and Instagram as I prepare for my mission next year. 


Tags
8 years ago

Would you smooch an alien?

Depends what he looks like!


Tags
8 years ago

Hi Jeanette, what will you be doing while aboard the ISS next year? Will you be researching anything interesting? I'm a recent mathematics/astrophysics grad and I'm really curious about what goes on in the ISS :)

Aboard the ISS all crewmembers are research subjects in and of themselves, so we will learn how human beings can live longer and longer in microgravity. We will also maintain the space station which is a huge experiment in and of itself. Then there will be experiments in material science, biotech experiments, as well as plant science.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags