Your gateway to endless inspiration
How has being in space changed your perspective of life on Earth?
After completing more than two years of basic training, our graduating class of astronauts is eligible for spaceflight. Assignments include the International Space Station, Artemis missions to the Moon, and ultimately, missions to Mars.
The class includes 11 astronauts, selected in 2017 from a record-setting pool of more than 18,000 applicants. This was more than double the previous record of 8,000 applicants set in 1978.
Meet the graduates:
“If you don’t love what you’re doing, you’re not going to be good at it. I think it’s a combination of finding things that you really love that will also be really challenging and will force you to grow along the way.”
This Washington native graduated from the U.S. Naval Academy with a bachelor’s degree in systems engineering. As a Gates Cambridge Scholar, which offers students an opportunity to pursue graduate study in the field of their choice at the University of Cambridge. Barron earned a master’s degree in nuclear engineering.
As a Submarine Warfare Officer, Barron was part of the first class of women commissioned into the submarine community, completing three strategic deterrent patrols aboard the USS Maine.
“Every STEM opportunity that I have ever gone down is because of some mentor who inspired me or some student who was ahead of me in school who inspired me.”
Zena Cardman is a native of Virginia and completed a bachelor’s degree in biology and master’s degree in marine sciences at The University of North Carolina, Chapel Hill. Her research has focused on microorganisms in subsurface environments, ranging from caves to deep sea sediments.
An intrepid explorer, Cardman’s field experience includes multiple Antarctic expeditions, work aboard research vessels as both scientist and crew, and NASA analog missions in British Columbia, Idaho, and Hawaii.
“I grew up with the mentality that education is truly a gift not to be taken for granted.”
This Iowa native graduated from the U.S. Air Force Academy in 1999 with bachelor’s degrees in astronautical engineering and engineering science. He continued on to earn a master’s degree in aeronautics and astronautics from Massachusetts Institute of Technology (MIT) and graduated from the U.S. Naval Test Pilot School.
Chari served as the Commander of the 461st Flight Test Squadron and the Director of the F-35 Integrated Test Force. He has accumulated more than 2,000 hours of flight time in the F-35, F-15, F-16 and F-18 including F-15E combat missions in Operation Iraqi Freedom.
“I get to work with incredible people that want to solve problems and are passionate about it. I really want to contribute to the world and this is how I want to do it.”
This Colorado native earned a bachelor’s degree in electrical engineering from the University of San Diego and a master’s degree in systems engineering from the Naval Postgraduate School. He also graduated from U.S. Naval Test Pilot School.
Dominick served on the USS Ronald Reagan as department head for Strike Fighter Squadron 115. He has more than 1,600 hours of flight time in 28 aircraft, 400 carrier-arrested landings and 61 combat missions.
“As you get older, other things become important to you, like being a part of something that’s bigger than yourself. This human endeavor of exploration is something that’s really exciting.”
Bob Hines is a Pennsylvania native and earned a bachelor’s degree in aerospace engineering from Boston University. He is a graduate of the U.S. Air Force Test Pilot School, where he earned a master’s degree in flight test engineering. He continued on to earn a master’s degree in aerospace engineering from the University of Alabama.
Hines served in the U.S. Air Force and Air Force Reserves for 18 years. He also served as a research pilot at our Johnson Space Center. He has accumulated more than 3,500 hours of flight time in 41 different types of aircraft and has flown 76 combat missions in support of contingency operations around the world.
“It was back in high school that I realized that I was really interested in engineering. I always liked taking things apart and understanding how things work and then I also really enjoy solving problems.”
Nicknamed “Woody”, this Pennsylvania native earned a bachelor’s degree in aeronautics and astronautics from MIT and a doctorate in electrical engineering and computer science from the University of California, Berkeley.
Hoburg was leading a research group at MIT at the time of his selection and is a two-time recipient of the AIAA Aeronautics and Astronautics Teaching Award in recognition of outstanding teaching.
“I fundamentally believed in the NASA mission of advancing our space frontier, all while developing innovation and new technologies that would benefit all of humankind.”
This California native trained and operated as a Navy SEAL, completing more than 100 combat operations and earning a Silver Star and Bronze Star with Combat “V”. Afterward, he went on to complete a degree in mathematics at the University of San Diego and a doctorate of medicine at Harvard Medical School.
Kim was a resident physician in emergency medicine with Partners Healthcare at Massachusetts General Hospital.
“Surround yourself with good people that have the characteristics that you want to grow in yourself. I think if you surround yourself with people like that you kind of bring each other up to a higher and higher level as you go.”
Jasmin Moghbeli, a U.S. Marine Corps major, considers Baldwin, New York, her hometown. She earned a bachelor's degree in aerospace engineering with information technology at MIT, followed by a master’s degree in aerospace engineering from the Naval Postgraduate School.
She is a distinguished graduate of the U.S. Naval Test Pilot School and has accumulated more than 1,600 hours of flight time and 150 combat missions.
“I’m one of those people who have wanted to be an astronaut since I was a little kid, and I think that came from an early obsession with flying – birds, airplanes, rockets.”
This Houston native earned a bachelor’s degree in aerospace engineering at the University of Kansas and a Master of Science degree in aeronautics and astronautics from Purdue University. As a student, she participated in multiple NASA internship programs, including the Reduced Gravity Student Flight Opportunities Program, the NASA Academy at Goddard Space Flight Center, and the internship program at the Jet Propulsion Laboratory.
O’Hara was a research engineer at Woods Hole Oceanographic Institution, where she worked on the engineering, test and operations of deep-ocean research submersibles and robots. She is also a private pilot and certified EMT and wilderness first responder.
“I just figured it was time to take the plunge and try it. And so, I did and beyond all dreams, it came true.”
Dr. Francisco “Frank” Rubio, a U.S. Army lieutenant colonel, is originally from Miami. He earned a bachelor’s degree in international relations from the U.S. Military Academy and earned a doctorate of medicine from the Uniformed Services University of the Health Sciences.
Rubio served as a UH-60 Blackhawk helicopter pilot and flew more than 1,100 hours, including more than 600 hours of combat and imminent danger time during deployments to Bosnia, Afghanistan, and Iraq. He is also a board certified family physician and flight surgeon.
“I’ve always been interested in exploring space. What’s out there and how can we as humans reach those outer stars and how can we learn more information about who we are through that process.”
This Colorado native earned a bachelor’s degree in geological and environmental sciences at Stanford University, and a doctorate in geology from the University of California, Los Angeles. Watkins has worked at Ames Research Center and the Jet Propulsion Laboratory.
Watkins was a postdoctoral fellow at the California Institute of Technology, where she collaborated on the Mars Curiosity rover, participating in daily planning of rover activities and investigating the geologic history of the Red Planet.
Learn more about the new space heroes right here: https://www.nasa.gov/newastronauts
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NASA honored the first class of astronaut candidates to graduate under the Artemis program on Friday, Jan. 10, at our Johnson Space Center in Houston.
Out of a record 18,000 applicants, the 11 new astronauts, alongside two from the Canadian Space Agency, have completed two years of training and are now eligible for spaceflight. One day they could embark on missions to the International Space Station, the Moon and even Mars.
Astronauts have been training in T-38 jets since 1957 because the sleek, white jets require crew members to think quickly in dynamic situations and to make decisions that have real consequences. This type of mental experience is critical to preparing for the rigors of spaceflight. It also familiarizes astronaut candidates with checklists and procedures. To check off this training criteria, candidates must be able to safely operate in the T-38 as either a pilot or back seater.
We are currently flying astronauts to the International Space Station every few months. Astronauts aboard the space station are conducting experiments benefiting humanity on Earth and teaching us how to live longer in space. Astronaut candidates learn to operate and maintain the complex systems aboard the space station as part of their basic training.
Spacewalks are the hardest thing, physically and mentally, that astronauts do. Astronaut candidates must demonstrate the skills to complete complex spacewalks in our Neutral Buoyancy Laboratory (giant pool used to simulate weightlessness). In order to do so, they will train on the life support systems within the spacesuit, how to handle emergency situations that can arise and how to work effectively as a team to repair the many critical systems aboard the International Space Station to keep it functioning as our science laboratory in space.
Astronaut candidates learn the coordinate systems, terminology and how to operate the space station’s two robotic arms called Canadarm2 and Dextre. They train in Canada for a two-week session where they develop more complex robotics skills including capturing visiting cargo vehicles with the arm. The arm, built by the Canadian Space Agency, is capable of handling large cargo and hardware and it helped build the entire space station. It has latches on either end, allowing it to be moved by both flight controllers on the ground and astronauts in space to various parts of the station.
The official languages of the International Space Station are English and Russian. All crew members – regardless of what country they come from – are required to know both. NASA astronauts train with their Russian crew mates so it makes sense that they should be able to speak Russian. Astronaut candidates start learning the language at the beginning of their training and train every week, as their schedule allows.
After completing this general training, the new astronauts could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.
Watch a recording of the astronaut candidate graduation ceremony on our YouTube channel.
This spring, we’ll once again be accepting applications for the next class of astronauts! Stay tuned to www.nasa.gov/newastronauts for upcoming information on how you can explore places like the Moon and Mars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NASA astronaut Nick Hague will be taking your questions in an Answer Time session on Thursday, January 16 from 12pm - 1pm ET here on NASA’s Tumblr! Find out what it’s like to live and work 254 miles above our planet’s surface. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Nick Hague was selected as one of eight members of the 21st NASA Astronaut class in 2013. Hague was the first astronaut from his class to be assigned to a mission which launched on October 11, 2018. Unfortunately, he and his crewmate Alexey Ovchinin, of the Russian space agency Roscosmos, were forced to abort the mission when a rocket booster experienced a malfunction shortly after the launch of their Soyuz MS-10. The aborted spacecraft landed safely.
His first flight to the International Space Station was from March 2019 through October 2019 as a a part of the Expeditions 59 and 60 crew. Together, the crew conducted hundreds of experiments, including investigations into devices that mimic the structure and function of human organs, free-flying robots and an instrument to measure Earth’s distribution of carbon dioxide. While at the International Space Station, Hague conducted three spacewalks, totaling 19 hours and 56 minutes with a total of 203 days in space.
Hague was awarded the Order of Courage from the Russian Federation for his actions during the Expedition 57/58 launch abort.
Hague was selected for the Air Force Fellows program where he was assigned as a member of the personal staff in the U.S. Senate, advising on matters of national defense and foreign policy.
He was a top flight test engineer in the U.S. Air Force.
He deployed five months to Iraq in support of Iraqi Freedom, conducting experimental airborne reconnaissance.
He enjoys exercise, flying, snow skiing and scuba.
Follow Nick Hague on Twitter at @AstroHague and follow NASA on Tumblr for your regular dose of space.
🔎 Lava Lake Discovery
🌋 Raikoke Volcano Eruption
🔥 Uptick in Amazon Fire Activity
2019 brought many memorable events on Planet Earth, and NASA satellites and astronauts captured a lot of the action! From new discoveries to tracking natural events and capturing amazing scenery, here are a few highlights from around the globe.
Read more about the images in this video, here.
Part of the appeal of Thanksgiving is how easily we settle into the familiar: cherished foods, friends and family, and favorite activities like football, puzzles or board games. As anyone who has spent Thanksgiving with someone else’s traditions knows, those familiar things can take on seemingly unusual forms. That’s especially true when you’re 200 miles up in space.
Holidays in space weren’t very common early in the program, but as astronauts start the 20th year of continuous habitation they will also be celebrating the 20th consecutive Thanksgiving in orbit. As it turns out, everything’s the same, but different.
Early in the space program, astronauts didn’t have much choice about their meals. A turkey dinner with all the trimmings was as much a pipe dream in the early 1960s as space travel had been a few decades earlier. Food had to be able to stay fresh, or at least edible, from the time it was packed until the end of the mission, which might be several weeks. It couldn’t be bulky or heavy, but it had to contain all the nutrition an astronaut would need. It had to be easily contained, so crumbs or droplets wouldn’t escape the container and get into the spacecraft instrumentation. For the first flights, that meant a lot of food in tubes or in small bite-sized pieces.
Examples of food from the Mercury program
Maybe you rake leaves to start the day or straighten up the house for guests. Perhaps you’re the cook. Just like you, astronauts sometimes have to earn their Thanksgiving dinner. In 1974, two members of the Skylab 4 crew started their day with a six-and-a-half hour spacewalk, replacing film canisters mounted outside the spacecraft and deploying an experiment package.
After the spacewalk, the crew could at least “sit down” for a meal together that included food they didn’t have to eat directly from a bag, tube or pouch. In the spacecraft’s “ward room”, a station held three trays of food selected for the astronauts. The trays themselves kept the food warm.
A food tray similar to the ones astronauts used aboard Skylab, showing food, utensils and clean wipes. The tray itself warmed the food.
The ward room aboard Skylab showing the warming trays in use. The Skylab 4 crew ate Thanksgiving dinner there in 1974.
It can’t be all mashed potatoes and pie. There have to be some greens. NASA has that covered with VEGGIE, the ongoing experiment to raise food crops aboard the space station. Though the current crop won’t necessarily be on the Thanksgiving menu, astronauts have already harvested and eaten “space lettuce”. Researchers hope to be growing peppers aboard the space station in 2020.
Astronaut Kjell Lindgren enjoys lettuce grown and harvested aboard the International Space Station.
Space station crews have been able to watch football on Thanksgiving thanks to live feeds from Mission Control. Unfortunately their choices of activities can be limited by their location. That long walk around the neighborhood to shake off the turkey coma? Not happening.
Football in space. It’s a thing.
No matter how you plan, there’s a chance something’s going to go wrong, perhaps badly. It happened aboard the Space Shuttle on Thanksgiving 1989. Flight Director Wayne Hale tells of plumbing problem that left Commander Fred Gregory indisposed and vacuum-suctioned to a particular seat aboard the spacecraft.
This is not the seat from which the mission commander flies the Space Shuttle.
If you can’t get enough of space food, tune into this episode of “Houston, We Have a Podcast” and explore the delicious science of astronaut mealtime.
And whether you’re eating like a king or one of our astronauts currently living and working in space, we wish everybody a happy and safe Thanksgiving!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
If you need to fix something on Earth, you could go to a store, buy the tools you need, and get started. In space, it’s not that easy.
Aside from the obvious challenges associated with space (like it being cold and there being no gravity), developing the right tools requires a great deal of creativity because every task is different, especially when the tools need to be designed from scratch. From the time an engineer dreams up the right tools to the time they are used in space, it can be quite a process.
On Nov. 15, astronauts Luca Parmitano and Drew Morgan began a series of spacewalks to repair an instrument called the Alpha Magnetic Spectrometer (AMS-2) on the exterior of the International Space Station. The first of four spacewalk focused on using specialized tools to remove shields and covers, to gain access to the heart of AMS to perform the repairs, and install a new cooling system.
The debris shield that covered Alpha Magnetic Spectrometer floats away toward Earth as astronaut Drew Morgan successfully releases it.
Once repaired, AMS will continue to help us understand more about the formation of the universe and search for evidence of dark matter and antimatter.
These spacewalks, or extravehicular activities (EVAs), are the most complex of their kind since the servicing of the Hubble Space Telescope. AMS is particularly challenging to repair not only because of the instrument’s complexity and sensitivity, but also because it was never designed to be fixed. Because of this design, it does not have the kinds of interfaces that make spacewalks easier, or the ability to be operated on with traditional multi-purpose tools. These operations are so complex, their design and planning has taken four years. Let’s take a look at how we got ready to repair AMS.
When designing the tools, our engineers need to keep in mind various complications that would not come into play when fixing something on Earth. For example, if you put a screw down while you’re on Earth, gravity will keep it there — in space, you have to consistently make sure each part is secure or it will float away. You also have to add a pressurized space suit with limited dexterity to the equation, which further complicates the tool design.
In addition to regular space complications, the AMS instrument itself presents many challenges — with over 300,000 data channels, it was considered too complex to service and therefore was not designed to one day be repaired or updated if needed. Additionally, astronauts have never before cut and reconnected micro-fluid lines (4 millimeters wide, less than the width of the average pencil) during a spacewalk, which is necessary to repair AMS, so our engineers had to develop the tools for this big first.
With all of this necessary out-of-the-box thinking, who better to go to for help than the teams that worked on the most well-known repair missions — the Hubble servicing missions and the space station tool teams? Building on the legacy of these missions, some of our same engineers that developed tools for the Hubble servicing missions and space station maintenance got to work designing the necessary tools for the AMS repair, some reworked from Hubble, and some from scratch. In total, the teams from Goddard Space Flight Center’s Satellite Servicing Projects Division, Johnson Space Center, and AMS Project Office developed 21 tools for the mission.
Like many great inventions, it all starts with a sketch. Engineers figure out what steps need to be taken to accomplish the task, and imagine the necessary tools to get the job done.
From there, engineers develop a computer-aided design (CAD) model, and get to building a prototype. Tools will then undergo multiple iterations and testing with the AMS repair team and astronauts to get the design just right, until eventually, they are finalized, ready to undergo vibration and thermal vacuum testing to make sure they can withstand the harsh conditions of launch and use in the space environment.
Hex Head Capture Tool Progression:
Hex Head Capture Tool Used in Space:
One of the reasons the AMS spacewalks have been four years in the making is because the complexity of the repairs required the astronauts to take extra time to practice. Over many months, astronauts tasked with performing the spacewalks practiced the AMS repair procedures in numerous ways to make sure they were ready for action. They practiced in:
Virtual reality simulations:
The Neutral Buoyancy Laboratory:
The Active Response Gravity Offload System (ARGOS):
Astronauts use this testing to develop and practice procedures in space-like conditions, but also to figure out what works and doesn’t work, and what changes need to be made. A great example is a part of the repair that involves cutting and reconnecting fluid lines. When astronauts practiced cutting the fluid lines during testing here on Earth, they found it was difficult to identify which was the right one to cut based on sight alone.
The tubes on the AMS essentially look the same.
After discussing the concern with the team monitoring the EVAs, the engineers once again got to work to fix the problem.
And thus, the Tube Cutting Guide tool was born! Necessity is the mother of invention and the team could not have anticipated the astronauts would need such a tool until they actually began practicing. The Tube Cutting Guide provides alignment guides, fiducials and visual access to enable astronauts to differentiate between the tubes. After each of eight tubes is cut, a newly designed protective numbered cap is installed to cover the sharp tubing.
With the tools and repair procedures tested and ready to go, they launched to the International Space Station earlier this year. Now they’re in the middle of the main event -- Luca and Drew completed the first spacewalk last Friday, taking things apart to access the interior of the AMS instrument. Currently, there are three other spacewalks scheduled over the course of a month. The next spacewalk will happen on Nov. 22 and will put the Tube Cutting Guide to use when astronauts reconnect the tubes to a new cooling system.
With the ingenuity of our tool designers and engineers, and our astronauts' vigorous practice, AMS will be in good hands.
Check out the full video for the first spacewalk. Below you can check out each of the tools above in action in space!
Debris Shield Worksite: 2:29:16 – Debris Shield Handling Aid 2:35:25 – Hex Head Capture Tool (first) 2:53:31 – #10 Allen Bit 2:54:59 – Capture Cages 3:16:35 – #10 Allen Bit (diagonal side) 3:20:58 – Socket Head Capture Tool 3:33:35 – Hex Head Capture Tool (last) 3:39:35 – Fastener Capture Block 3:40:55 – Debris Shield removal 3:46:46 – Debris Shield jettison
Handrail Installations: 4:00:53 – Diagonal Beam Handrail Install 4:26:09 – Nadir Vacuum Case Handrail Install 4:33:50 – Zenith Vacuum Case Handrail InstallVertical Support Beam (VSB)
Vertical Support Beam (VSB) Worksite: 5:04:21 – Zip Tie Cutter 5:15:27 – VSB Cover Handling Aid 5:18:05 – #10 Allen Bit 5:24:34 – Socket Head Capture Tool 5:41:54 – VSB Cover breaking 5:45:22 – VSB Cover jettison 5:58:20 – Top Spacer Tool & M4 Allen Bit 6:08:25 – Top Spacer removal 7:42:05 - Astronaut shoutout to the tools team
Launched less than four months after Apollo 11 put the first astronauts on the Moon, Apollo 12 was more than a simple encore. After being struck by lightning on launch -- to no lasting damage, fortunately -- Apollo 12 headed for a rendezvous with a spacecraft that was already on the Moon. The mission would expand the techniques used to explore the Moon and show the coordination between robotic and human exploration, both of which continue today as we get return to return astronauts to the Moon by 2024.
Apollo 12 lifted off at 11:22 a.m. EST, Nov. 14, 1969, from our Kennedy Space Center. Aboard the Apollo 12 spacecraft were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot.
Barely 40 seconds after liftoff, lightning struck the spacecraft. Conrad alerted Houston that the crew had lost telemetry and other data from the mission computers. As the Saturn V engines continued to push the capsule to orbit, ground controllers worked out a solution, restarting some electrical systems, and Apollo 12 headed toward the Moon.
Cameras at the Kennedy Space Center captured this image of the same lightning bolt that struck Apollo 12 striking the mobile platform used for the launch.
Apollo 12 landed on the Moon on Nov. 19, and on the second moonwalk Conrad and Bean walked approximately 200 yards to the Surveyor 3 spacecraft. One of seven Surveyor spacecraft sent to land on the Moon and to gather data on the best way to land humans there, Surveyor 3 had been on the Moon for more than two years, exposed to cosmic radiation and the vacuum of space. Scientists on the ground wanted to recover parts of the spacecraft to see what effects the environment had had on it.
Apollo 12 commander Pete Conrad examines the Surveyor 3 spacecraft before removing its camera and other pieces for return to Earth. In the background is the lunar module that landed Conrad and lunar module pilot Alan Bean on the Moon.
Apollo 12 splashed down on Nov. 24. When Artemis returns astronauts to the Moon in 2024, it will be building on Apollo 12 as much as any of the other missions. Just as Apollo 12 had to maneuver off the standard “free return” trajectory to reach its landing site near Surveyor, Artemis missions will take advantage of the Gateway to visit a variety of lunar locations. The complementary work of Surveyor and Apollo -- a robotic mission preparing the way for a crewed mission; that crewed mission going back to the robotic mission to learn more from it -- prefigures how Artemis will take advantage of commercial lunar landers and other programs to make lunar exploration sustainable over the long term.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Just like people here on Earth, astronauts get shipments too! But not in the typical sense. 8,200 pounds of cargo, including supplies and scientific experiments, is on its way to the International Space Station thanks to Northrop Grumman’s Cygnus cargo spacecraft. This ‘package’ launched out of Wallops Flight Facility on Nov. 2, 2019 at 9:59 a.m. EDT. The investigations aboard the rocket range from research into human control of robotics in space to reprocessing fibers for 3D printing. Get ready, because these new and exciting experiments are arriving soon!
Stars, planets and their molecules only make up 15% of our universe. The rest is dark matter. However, no one has actually ever been able to see or study it. The Alpha Magnetic Spectrometer -02 (AMS-02) has been searching for this substance since 2011. Northrop Grumman’s CRS-12 mission carries new parts for AMS-02 that will be added during a series of upcoming spacewalks so that the instrument can continue to help us shed light on this mystery.
Rovers operated by astronauts on the International Space Station will attempt to collect geological samples on Earth as part of an investigation called ANALOG-1. The samples, however, are not the important part of the study. Humans experience degraded sensorimotor functions in microgravity that could affect their operation of a robot. This study is designed to learn more about these issues, so that one day astronauts could use robots to perform research on planets they hope to walk on.
The AstroRad Vest is pretty rad. So rad, in fact, that it was sent up on the launch of Northrop Grumman’s CRS-12 mission. This vest intends to protect astronauts from harmful radiation in space. While going about normal activity on the space station, astronauts will wear AstroRad and make note of things like comfort over long periods of time. This will help researchers on Earth finalize the best design for future long duration missions.
The Made in Space Recycler (MIS) looks at how different materials on the International Space Station can be turned into filament used for 3D printing. This 3D printing is done right there in space, in the Additive Manufacturing Facility. Similar studies will be conducted on Earth so that comparisons can be made.
A collaboration between Automobili Lamborghini and the Houston Methodist Research Institute will be using NanoRacks-Craig-X FTP to test the performance of 3D-printed carbon fiber composites in the extreme environment of space. The study could lead to materials used both in space and on Earth. For example, the study may help improve the design of implantable devices for therapeutic drug delivery.
Everyone enjoys the aroma of fresh-baked cookies, even astronauts. On future long-duration space missions, fresh-baked food could have psychological and physiological benefits for crew members, providing them with a greater variety of more nutritious meals. The Zero-G Oven experiment examines heat transfer properties and the process of baking food in microgravity.
Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook.
If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Observing Earth from space can alter an astronauts’ cosmic perspective, a mental shift known as the “Overview Effect.” First coined by space writer Frank White in 1987, the Overview Effect is described as a feeling of awe for our home planet and a sense of responsibility for taking care of it.
See Earth from the vantage point of our astronauts in these perspective-changing views:
Astronaut Bruce McCandless II used his hands to control his movement above the Earth during the first-ever spacewalk that didn't use restrictive tethers and umbilicals. Fellow crew members aboard the space shuttle Challenger captured this image on Feb. 7, 1984, through windows on the flight deck.
Of his famous spacewalk, McCandless wrote in 2015: "My wife [Bernice] was at mission control, and there was quite a bit of apprehension. I wanted to say something similar to Neil [Armstrong] when he landed on the moon, so I said, 'It may have been a small step for Neil, but it’s a heck of a big leap for me.' That loosened the tension a bit."
Astronaut Tracy Caldwell Dyson looks through a window in the Cupola of the International Space Station (ISS). A blue and white part of Earth and the blackness of space are visible through the windows. The image was a self-portrait using natural light.
In a preflight interview for Expedition 23/24, Dyson said: “hands down, the best part about it is being able to look at that view every day and during the time frame we’ll be up there, hopefully, we’ll have a big bay window and much more opportunity to observe this beautiful planet.”
As astronaut Nick Hague prepared to conclude his six-month stay aboard the ISS, he shared this photo saying: "Today is my last Monday living on this orbiting laboratory and I’m soaking up my final views. The @Space_Station is truly an engineering marvel. #MondayMotivation."
He and Expedition 60 and Soyuz commander Alexey Ovchinin of the Russian space agency Roscosmos completed a 203-day mission, spanning 3,248 orbits of Earth, and a journey of 80.8 million miles.
On Dec. 24, 1968, Apollo 8 astronauts Frank Borman, Jim Lovell and Bill Anders became the first humans to witness the Earth rising above the Moon's surface.
Anders, photographing the Moon from the right-side window, caught sight of the view, and exclaimed: “Oh my God, look at that picture over there! There’s the Earth comin’ up. Wow, is that pretty!”
Besides Earthrise, the Blue Marble is probably the most famous image of Earth that NASA has produced. Taken by the Apollo 17 crew on their way to the Moon in 1972, the Blue Marble and other NASA imagery of Earth has been credited by some with helping to fuel the environmental movement.
For more information on the Overview Effect, check out this episode of Houston We Have a Podcast.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Since the 19th century, women have been making strides in areas like coding, computing, programming and space travel, despite the challenges they have faced. Sally Ride joined NASA in 1983 and five years later she became the first female American astronaut. Ride's accomplishments paved the way for the dozens of other women who became astronauts, and the hundreds of thousands more who pursued careers in science and technology. Just last week, we celebrated our very first #AllWomanSpacewalk with astronauts Christina Koch and Jessica Meir.
Here are just a couple of examples of pioneers who brought us to where we are today:
Pearl Young was hired in 1922 by the National Advisory Committee for Aeronautics (NACA), NASA’s predecessor organization, to work at its Langley site in support in instrumentation, as one of the first women hired by the new agency. Women were also involved with the NACA at the Muroc site in California (now Armstrong Flight Research Center) to support flight research on advanced, high-speed aircraft. These women worked on the X-1 project, which became the first airplane to fly faster than the speed of sound.
Young was the first woman hired as a technical employee and the second female physicist working for the federal government.
The NACA hired five women in 1935 to form its first “computer pool”, because they were hardworking, “meticulous” and inexpensive. After the United States entered World War II, the NACA began actively recruiting similar types to meet the workload. These women did all the mathematical calculations – by hand – that desktop and mainframe computers do today.
Computers played a role in major projects ranging from World War II aircraft testing to transonic and supersonic flight research and the early space program. Women working as computers at Langley found that the job offered both challenges and opportunities. With limited options for promotion, computers had to prove that women could successfully do the work and then seek out their own opportunities for advancement.
Marjorie Townsend was blazing trails from a very young age. She started college at age 15 and became the first woman to earn an engineering degree from the George Washington University when she graduated in 1951. At NASA, she became the first female spacecraft project manager, overseeing the development and 1970 launch of the UHURU satellite. The first satellite dedicated to x-ray astronomy, UHURU detected, surveyed and mapped celestial X-ray sources and gamma-ray emissions.
NASA’s mission to land a human on the Moon for the very first time took hundreds of thousands workers. These are some of the stories of the women who made our recent #Apollo50th anniversary possible:
• Margaret Hamilton led a NASA team of software engineers at the Massachusetts Institute of Technology and helped develop the flight software for NASA’s Apollo missions. She also coined the term “software engineering.” Her team’s groundbreaking work was perfect; there were no software glitches or bugs during the crewed Apollo missions.
• JoAnn Morgan was the only woman working in Mission Control when the Apollo 11 mission launched. She later accomplished many NASA “firsts” for women: NASA winner of a Sloan Fellowship, division chief, senior executive at the Kennedy Space Center and director of Safety and Mission Assurance at the agency.
• Judy Sullivan, was the first female engineer in the agency’s Spacecraft Operations organization, was the lead engineer for health and safety for Apollo 11, and the only woman helping Neil Armstrong suit up for flight.
Author Margot Lee Shetterly’s book – and subsequent movie – Hidden Figures, highlighted African-American women who provided instrumental support to the Apollo program, all behind the scenes.
• An alumna of the Langley computing pool, Mary Jackson was hired as the agency’s first African-American female engineer in 1958. She specialized in boundary layer effects on aerospace vehicles at supersonic speeds.
• An extraordinarily gifted student, Katherine Johnson skipped several grades and attended high school at age 13 on the campus of a historically black college. Johnson calculated trajectories, launch windows and emergency backup return paths for many flights, including Apollo 11.
• Christine Darden served as a “computress” for eight years until she approached her supervisor to ask why men, with the same educational background as her (a master of science in applied mathematics), were being hired as engineers. Impressed by her skills, her supervisor transferred her to the engineering section, where she was one of few female aerospace engineers at NASA Langley during that time.
Geraldyn “Jerrie” Cobb was the among dozens of women recruited in 1960 by Dr. William Randolph "Randy" Lovelace II to undergo the same physical testing regimen used to help select NASA’s first astronauts as part of his privately funded Woman in Space Program.
Ultimately, thirteen women passed the same physical examinations that the Lovelace Foundation had developed for NASA’s astronaut selection process. They were: Jerrie Cobb, Myrtle "K" Cagle, Jan Dietrich, Marion Dietrich, Wally Funk, Jean Hixson, Irene Leverton, Sarah Gorelick, Jane B. Hart, Rhea Hurrle, Jerri Sloan, Gene Nora Stumbough, and Bernice Trimble Steadman. Though they were never officially affiliated with NASA, the media gave these women the unofficial nicknames “Fellow Lady Astronaut Trainees” and the “Mercury Thirteen.”
The early space program inspired a generation of scientists and engineers. Now, as we embark on our Artemis program to return humanity to the lunar surface by 2024, we have the opportunity to inspire a whole new generation. The prospect of sending the first woman to the Moon is an opportunity to influence the next age of women explorers and achievers.
This material was adapted from a paper written by Shanessa Jackson (Stellar Solutions, Inc.), Dr. Patricia Knezek (NASA), Mrs. Denise Silimon-Hill (Stellar Solutions), and Ms. Alexandra Cross (Stellar Solutions) and submitted to the 2019 International Astronautical Congress (IAC). For more information about IAC and how you can get involved, click here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Other than joy, why do you do the things you do?
What is your advice to someone who wants to follow the same steps you take?
Hey, Kate! What would you say/what advice would you give to your younger self? ✨
Have you ever had to troubleshoot a problem in space?
As an astronaut who has been on a spacewalk before, what does the all-woman spacewalk mean to you?
What is like to be surrounded by the stars and darkness? Is it terrifying or calming?
We call it a spacesuit, almost as if it’s something an astronaut pulls out of the closet. It’s more accurate to think of it as an astronaut’s personal spacecraft: self-contained and functional, with a design focused on letting astronauts work safely in space. Just as we’ve been able to improve rockets, satellites and data systems over 60 years, we’ve made great improvements to spacesuits.
When the first woman and next man step foot on the Moon in 2024, they will be wearing the next generation of spacesuit, called the Exploration Extravehicular Mobility Unit, or xEMU for short. The new suit can be used under different conditions for various tasks, including walking, driving rovers or collecting samples. The design will also allow the suits to be used for spacewalks on the space station, or Gateway – our upcoming spaceship that will orbit the Moon. Future missions to Mars can build on the core suit technologies with additional upgrades for use in the Martian atmosphere and greater gravity.
Even before we had astronauts, pilots were using pressurized suits to fly at high speeds at altitudes where the air was too thin to breathe. Our first spacesuits – shown here worn by the first NASA astronauts in 1959 – were variations of the suit used by Navy test pilots.
The Gemini spacesuit – shown here in a photo of astronaut Ed White making the first American spacewalk in 1965 – added a line that could connect the astronaut to the spacecraft for oxygen, and which also served as a tether when they left the capsule for a spacewalk.
The Apollo astronauts had to completely separate themselves from the lunar module, so we added a portable life support unit, which the astronauts carried on their backs. The photo above shows the life support system on the suit of Apollo 11 astronaut Buzz Aldrin as he deploys lunar experiments in 1969.
Though the bulky suits weren’t exactly easy to maneuver, astronauts still managed to get their jobs done and enjoy themselves doing it.
What, you wouldn’t sing if you were on the moon?
We have used different suits for different purposes. During the Space Shuttle program, astronauts inside the shuttle wore these orange “pumpkin” suits, which were designed to be worn within the cabin.
On spacewalks, special suits – made to be worn only outside the spacecraft – provided high mobility, more flexibility and life support as the astronauts worked in zero gravity.
During construction of the International Space Station, we should have issued a hard hat and a pair of steel-toed boots with each suit. Astronauts conducted more than 200 spacewalks as part of building the station, which took place from 1998 until 2011. Above, an astronaut at the end of the shuttle’s robotic arm is maneuvered back into the shuttle’s payload bay with a failed pump during the shuttle’s final flight in 2011.
Spacesuits are rarely the story themselves, but they make it possible for our astronauts to get their jobs done, even when they have to improvise. In the picture above, astronauts on a 1992 space shuttle mission are conducting a spacewalk they hadn’t originally planned on. The crew was originally supposed to use a specially designed grab bar to capture the INTELSAT VI satellite. Two attempts to use the grab bar on two-person spacewalks failed, so we improvised a plan to add a third spacewalker and have all three go outside and literally grab the satellite.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
“Where else in the world would you hear a story like mine? I’m a kid from a single mom, a teenage mom from El Salvador who worked in all sorts of low-income jobs... My story is a great story about America. What are the chances that a kid like me would end up being where I am today?” - Frank Rubio
Dr. Frank Rubio is a Los Angeles-born Salvadorian-American who was selected as NASA astronaut candidate in 2017. The Florida native graduated from the U.S. Military Academy and earned a Doctorate of Medicine from the Uniformed Services University of the Health Sciences. Prior to attending medical school, he served as a UH-60 Blackhawk helicopter pilot and flew more than 1,100 hours, including more than 600 hours of combat and imminent danger time during deployments to Bosnia, Afghanistan and Iraq. Dr. Rubio is a board certified family physician and flight surgeon. At the time of his selection, he was serving in the 10th Special Forces Group (Airborne).
Frank took time from training to become a certified NASA Astronaut to answer questions about his life and career:
It was a friend in the astronaut corps that recommended I put in an application. After he recommended it, I thought it was an amazing opportunity to be a part of something bigger than myself and to allow me to continue to serve. It gave me an opportunity to explore and make a difference. And it sounded like a lot of fun! My past careers have allowed me to be comfortable with uncertainty and the unknown and to function well despite often not having all the facts.
I was on the skydive team in college.
I have one of the best jobs in the world because I get to train and work towards a mission that helps humankind. My job is unique in that you and your team are working to make a difference from a much bigger perspective. And hopefully I get to ride on a rocket and go to space!
Early in my career and throughout my career I was assigned to jobs that may not have been my first choice, but they turned out to be amazing opportunities. I was taught to have a good attitude and give it your best no matter where you are. Those opportunities ended up being some of the best and helped me get where I am today.
A lot of people don’t realize how much studying is involved. It’s comparable to the studying I did in flight school or medical school.
Pictures of my family and friends, a Bible and lots of books to read (probably on a tablet), patches from my Army units- they helped form me to be the person I am today, music, and if I could take my dog (and family), I definitely would! Also, Something for each of my kids to give to them.
The overall idea that the rocks and the different units we studied have so much to tell. You learn to appreciate how much the layout of the land and the rocks and the way they interact together can tell you about the history of that place. It’s amazing.
Everything will be fantastic from the ride up there, to floating in space, to the amazing science we get to perform, to being part of the team. I don’t think I’ll ever get tired of looking back at Earth and having the chance to get the perspective to recognize the grandeur and uniqueness of Earth.
Hello! How are you? I would want to know about them and to share humankind with them.
Thank you for your time Frank, and good luck as you continue to complete astronaut training!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NASA astronaut Kate Rubins will be taking your questions in an Answer Time session on Thursday, October 17 from 12pm - 1pm ET here on NASA’s Tumblr! Find out what it’s like to live and work 254 miles above our planet’s surface. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Dr. Kate Rubins was selected in 2009 as one of nine members of the 20th NASA astronaut class. She holds a Bachelor of Science degree in Molecular Biology and a Ph.D. in Cancer Biology. During her first spaceflight from July - October 2016 as a member of the Expedition 49 and 50 crew, Dr. Rubins made history by becoming the first person to sequence DNA in space. She also worked on the Heart Cells Experiment which studied how heart muscle tissues contract, grow and change in microgravity. Before becoming a NASA astronaut, Dr. Rubins worked with some of the world’s most dangerous pathogens, heading 14 researchers studying viral diseases that primarily affect Central and West Africa.
Dr. Rubins and colleagues developed the first model of smallpox infection.
She conducted her undergraduate research on HIV-1 integration in the Infectious Diseases Laboratory at the Salk Institute for Biological Studies.
She conducted research on filoviruses (Ebola and Marburg), Arenaviruses (Lassa Fever) and collaborative projects with the U.S. Army to develop therapies for Ebola and Lassa viruses.
She has logged 115 days in space and 12 hours and 46 minutes of spacewalk time.
She enjoys running, cycling, swimming, flying, scuba diving and reading.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
And that’s a wrap!! Thank you for all the wonderful questions in this Tumblr Answer Time, and we hope you learned a little something about what it takes to launch humans to space.
You can follow all of our latest Space Station news on Twitter, Instagram and Facebook.
How did the crews react to you being the first non-astronaut CapCom? I understand it was quite an important thing to people that the CapCom could empathise with their experiences.
What aspect of spaceflight always blows your mind, even after all this time?
What was your favorite part of being a Flight Director?
What was the most fun you had in Mission Control?
When a spacecraft built for humans ventures into deep space, it requires an array of features to keep it and a crew inside safe. Both distance and duration demand that spacecraft must have systems that can reliably operate far from home, be capable of keeping astronauts alive in case of emergencies and still be light enough that a rocket can launch it.
Missions near the Moon will start when the Orion spacecraft leaves Earth atop the world’s most powerful rocket, the Space Launch System. After launch from Kennedy Space Center in Florida, Orion will travel beyond the Moon to a distance more than 1,000 times farther than where the International Space Station flies in low-Earth orbit, and farther than any spacecraft built for humans has ever ventured. To accomplish this feat, Orion has built-in technologies that enable the crew and spacecraft to explore far into the solar system. Let’s check out the top five:
As humans travel farther from Earth for longer missions, the systems that keep them alive must be highly reliable while taking up minimal mass and volume. Orion will be equipped with advanced environmental control and life support systems designed for the demands of a deep space mission. A high-tech system already being tested aboard the space station will remove carbon dioxide (CO2) and humidity from inside Orion. The efficient system replaces many chemical canisters that would consume up to 10 percent of crew livable area. To save additional space, Orion will also have a new compact toilet, smaller than the one on the space station.
Highly reliable systems are critically important when distant crew will not have the benefit of frequent resupply shipments to bring spare parts from Earth. Even small systems have to function reliably to support life in space, from a working toilet to an automated fire suppression system or exercise equipment that helps astronauts stay in shape to counteract the zero-gravity environment. Distance from home also demands that Orion have spacesuits capable of keeping astronaut alive for six days in the event of cabin depressurization to support a long trip home.
The farther into space a vehicle ventures, the more capable its propulsion systems need to be in order to maintain its course on the journey with precision and ensure its crew can get home.
Orion’s highly capable service module serves as the powerhouse for the spacecraft and provides propulsion capabilities that enable it to go around the Moon and back on exploration missions. The service module has 33 engines of various sizes. The main engine will provide major in-space maneuvering capabilities throughout the mission such as inserting Orion into lunar orbit and firing powerfully enough to exit orbit for a return trip to Earth. The other 32 engines are used to steer and control Orion on orbit.
In part due to its propulsion capabilities, including tanks that can hold nearly 2,000 gallons of propellant and a back up for the main engine in the event of a failure, Orion’s service module is equipped to handle the rigors of travel for missions that are both far and long. It has the ability to bring the crew home in a variety of emergency situations.
Going to the Moon is no easy task, and it’s only half the journey. The farther a spacecraft travels in space, the more heat it will generate as it returns to Earth. Getting back safely requires technologies that can help a spacecraft endure speeds 30 times the speed of sound and heat twice as hot as molten lava or half as hot as the sun.
When Orion returns from the Moon it will be traveling nearly 25,000 mph, a speed that could cover the distance from Los Angeles to New York City in six minutes. Its advanced heat shield, made with a material called AVCOAT, is designed to wear away as it heats up. Orion’s heat shield is the largest of its kind ever built and will help the spacecraft withstand temperatures around 5,000 degrees Fahrenheit during reentry though Earth’s atmosphere.
Before reentry, Orion also will endure a 700-degree temperature range from about minus 150 to 550 degrees Fahrenheit. Orion’s highly capable thermal protection system, paired with thermal controls, will protect it during periods of direct sunlight and pitch black darkness while its crews comfortably enjoy a safe and stable interior temperature of about 77 degrees Fahrenheit.
As a spacecraft travels on missions beyond the protection of Earth’s magnetic field, it will be exposed to a harsher radiation environment than in low-Earth orbit with greater amounts of radiation from charged particles and solar storms. This kind of radiation can cause disruptions to critical computers, avionics and other equipment. Humans exposed to large amounts of radiation can experience both acute and chronic health problems ranging from near-term radiation sickness to the potential of developing cancer in the long-term.
Orion was designed from the start with built in system-level features to ensure reliability of essential elements of the spacecraft during potential radiation events. For example, Orion is equipped with four identical computers that each are self-checking, plus an entirely different backup computer, to ensure it can still send commands in the event of a disruption. Engineers have tested parts and systems to a high standard to ensure that all critical systems remain operable even under extreme circumstances.
Orion also has a makeshift storm shelter below the main deck of the crew module. In the event of a solar radiation event, we developed plans for crew on board to create a temporary shelter inside using materials on board. A variety of radiation sensors will also be on the spacecraft to help scientists better understand the radiation environment far away from Earth. One investigation, called AstroRad, will fly on Exploration Mission-1 and test an experimental vest that has the potential to help shield vital organs and decrease exposure from solar particle events.
Spacecraft venturing far from home go beyond the Global Positioning System (GPS) in space and above communication satellites in Earth orbit. To talk with mission control in Houston, Orion’s communication and navigation systems will switch from our Tracking and Data Relay Satellites (TDRS) system used by the International Space Station, and communicate through the Deep Space Network.
Orion is equipped with backup communication and navigation systems to help the spacecraft stay in contact with the ground and orient itself if its primary systems fail. The backup navigation system, a relatively new technology called optical navigation, uses a camera to take pictures of the Earth, Moon and stars and autonomously triangulate Orion’s position from the photos. Its backup emergency communications system doesn’t use the primary system or antennae for high-rate data transfer.
Keep up with all the latest news on our newest, state-of-the art spacecraft by following NASA Orion on Facebook and Twitter.
More on our Moon to Mars plans, here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
That’s a wrap! Thanks for all the great questions.
Follow Serena on Twitter at @AstroSerena and follow the International Space Station on Twitter, Instagram and Facebook to keep up with all the cool stuff happening on our orbital laboratory.
How does the whole sleeping situation work with 0 gravity, or do sleep mid air?
What advice do you have for Hispanic boys and girls who see themselves in you and are inspired by your achievements?
What does actually launching into space feel like?