TumbleCatch

Your gateway to endless inspiration

Nasa - Blog Posts

2 years ago

NASA Photographers Share Their #NASAMoonSnap

We’re getting ready to launch Artemis I, the first test flight of the rocket and spacecraft that will take future astronauts to the Moon! As we prepare for the lunar voyage of the Space Launch System (SLS) rocket and Orion spacecraft launching as early as Aug. 29, 2022, we would like you to share your excitement with us. Share all types of Moon-inspired content with us with the hashtag #NASAMoonSnap, and we will choose some entries to share on our social media platforms and during the launch broadcast. Get creative! We’re looking for Moon paintings, Moon poetry, Moon pottery, Moon latte foam art — the sky is not the limit.

Since we have the full Moon coming up on Aug. 11, we wanted to share our handy dandy Moon photography guide and inspire you with some of our NASA imagery experts’ stories on capturing the Moon.

The full Moon glows behind the SLS rocket and Orion spacecraft.

"The first rollout of the SLS rocket with the Orion spacecraft aboard was a really exciting moment to capture. I was photographing at Kennedy Space Center in an area where many of the employees that had worked on different parts of the SLS were watching. It was so great to hear some of their stories and see their pride in helping to build this amazing rocket and spacecraft. Once the mobile launcher with SLS passed the crowds to head toward the launchpad, people began to line up in their cars to leave. I decided to stick around and try to get a closer image of the Moon with SLS. It was fairly dark by the time I made this image, so there isn’t any detail in the moon, but it’s still moving to see them next to one another and know that SLS will be closer to the Moon than Earth very soon, and will one day enable humans to land on the lunar surface again!" — Aubrey Gemignani, NASA contract Photo Archivist/Photographer, NASA Headquarters

The X-1E aircraft dominates the foreground of this photo. It is white, with its designation written on it in big orange letters. The Moon is in the background, lined up with the nose of the airplane.

“I set up this shot when I saw the Moon was lined up perfectly with the X-1E in front of the main entrance to Armstrong Flight Research Center one morning last year. What captured my eye about this scene was that it showcased the past and the future of NASA in one image. The X-1 was a key piece of early NACA/NASA history, and it is pointing to the Moon showing us where we are going next with Artemis. I still remember walking around on my first day at NASA and seeing all the places where history was made. I was in awe as I walked these hallowed grounds. I know that there is still a great deal of history to be written here as we strive to go higher, further and faster and I’m glad that I get to be here to document it.” — Joshua Fisher, Photographer, NASA’s Armstrong Flight Research Center

The full Moon is framed by the branches of a tree. The tree is in silhouette against the dark blue of the night sky.

“While out capturing images of the Moon, the memories of my first day as a photographer for NASA came flooding back. One of my first memories is going to the exhibits department and getting to hold an actual Moon rock sample. That day changed my perception of the Moon forever. That moment made the Moon more than just something in the sky. It became tangible and real, and my part in all of this became clear. The honor and privilege I feel everyday is overwhelming.” — Jef Janis, Still Imaging Specialist, NASA’s Glenn Research Center

An orange-yellow full Moon is in the night sky above a lit-up riverboat.

“When I can, I like my Moon photos to have a sense of place. The trick is finding a shooting position and a landmark that will fit in with the Moon’s very stringent plans for rising. I went out to shoot the Sturgeon Moon, which was also a rare blue moon, last August. As I was shooting the moonrise from the riverbank in downtown New Orleans, I was lucky to have one of the city’s iconic riverboats turn a bend and head upriver to pass beneath the Moon. Happily the river was low and I was able to scramble down the high bank to reduce the vertical distance between the quickly rising moon and the slowly passing riverboat.” — Michael DeMocker, Photographer, NASA’s Michoud Assembly Facility

The morning sky is in a gradient of blue to yellow (from top to bottom). The crescent Moon and two aircraft can faintly be seen.

“I was excited to try to capture a waning crescent Moon at dawn, even though it was late February, 20 degrees Fahrenheit and 6:30 in the morning…Nonetheless, I decided to photograph on-site at Lewis Field, and ended up using my telephoto lens to really zoom in on the Moon. In a race against the sunrise and the Moon disappearing, I was able to capture a cool shot of the Moon with a couple planes making an appearance as well (The Cleveland Hopkins Airport is right next door). Although is it me, or does one of the planes look like a rocket taking off…?” — Jordan Salkin, Scientific Imaging Specialist, NASA’s Glenn Research Center

NASA's Glenn Research Center is in the foreground. The building's name is backlit, and there is snow on the ground. The Moon is high above in the sky. The sun is just starting to rise, turning the sky at bottom left orange.

“I have worked at NASA’s Glenn Research Center since 1990 and have enjoyed every second doing what I do to support NASA’s mission. On my first day back to work onsite after 22 months of telework I saw this beautiful sunrise with the snow, the Moon, and the hangar. It felt good to be at work seeing the landscape I was so used to seeing. I had to take these pictures to share with my colleagues. ” — Jeffrey F. Abbott, Media Support Specialist, NASA’s Glenn Research Center 

The half Moon peeks between budding tree branches.

“In creating this Moon image, I almost felt pressured to find the ‘perfect location.’ The more that I thought about that prospect, the more I was drawn to using only natural elements, in my own environment. I wanted to find an image in my own backyard. This image was captured just as the Sun dropped below the horizon. I had a very short window of time when these colors would be possible. Two minutes earlier or later would have produced a totally different image. The almost abstract lines of a Maple tree in the earliest stages of budding seemed to be in concert with the waxing crescent Moon, both preparing for full bloom. Nature on display in its simplicity.” — Marvin Smith, Still Imaging Specialist Lead, NASA’s Glenn Research Center

The full Moon hangs in the vibrant blue sky, above the Lorain Lighthouse. The sky and lake are the same shade of blue and blend into one another. The lighthouse is white with red roofs. It sits on a small piece of land that juts out into the water.

“The lighthouse in Lorain, Ohio, has been photographed by amateur and professional photographers for decades, but I have never photographed it before. When I calculated that the path of the Moon was going to go over and past the lighthouse with a reflection over the water, I decided to give it a try. I encountered four other photographers on the same pier with me that early morning. They were huddled in the middle of the pier and I was at the end. I think I got the best photo.” — Quentin Schwinn, Scientific Photographer, NASA’s Glenn Research Center

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

“It’s Summer Camp for Aviation Geeks”: NASA Returns to EAA AirVenture Oshkosh

As a child fascinated with aviation, Michael Jorgensen, Public Affairs Specialist for the Electrified Powertrain Flight Demonstration project, attended EAA AirVenture Oshkosh (“Oshkosh” for short) multiple times. Now, he represents us there, sharing what we’ve been working on. Read on to see what going to Oshkosh is like as Michael takes us on a tour—and join us next time!

MICHAEL:

Every year, Wittman Regional Airport in the town of Oshkosh, Wisconsin, swells from 67,000 to 600,000 people, becoming a hotspot for aviation in the United States. The Experimental Aircraft Association (EAA) began AirVenture in 1953 and is a ‘Must Do’ for any aviation geek.

My story with EAA AirVenture began in the late 1990s. As a fan of everything aviation, and having grown up near Chicago, Oshkosh was always on my radar – and I attended several times while I was growing up.

Young Michael posing in front of a NASA aircraft at EAA Airventure 1998 in Oshkosh, WI. A young boy stands with his hands in his pockets in front of a white and blue emblazoned jet on a dark grey tarmac.
Adult Michael posing in front of a NASA aircraft at EAA Airventure 2022 in Oshkosh, WI. An adult man wearing a NASA t-shirt stands in front of a white and blue emblazoned propeller plane on a green patch of grass.

Michael recreates a childhood image from EAA AirVenture 1998 at EAA AirVenture 2022. Credit: Michael Jorgensen

Coming back to the airport grounds this week, all my childhood memories came flooding back: the noises, the planes, the smells, and the pure excitement. As a kid, I could only dream of working for NASA, never imagining it would come true almost 25 years later.

A large hexagonal airport traffic control tower at Wittman Regional Airport. The structure of the tower is tan and the background of the image is clear blue skies with two aircraft flying overhead.

The airport traffic control tower at Wittman Regional Airport at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

When driving in, you first see a lot of air traffic – ranging from hang gliders, to old warbirds, to stunt planes, to the newest military jets rumbling skyward. During the last full week in July, the airport control tower becomes the busiest one in the world, coordinating approximately 116 takeoffs/landings per hour throughout each day – almost 2 every minute! Last year saw more than 10,000 aircraft arrive at the airport. The excitement grows as you pull off the highway and are greeted by rows and rows of general aviation aircraft as far as the eye can see.

Hundreds of brightly colored aircraft are arranged in rows on a large grass field. Under the wings of each aircraft are small tents ranging in colors from yellow and green to grey.

The airport field at Wittman Regional Airport, featuring general aviation aircraft and camping tents, at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

The constant propeller buzz in the background and crackling of fighter jets overhead is noticeable as you walk through the airport grounds. What makes this sight even more unique is camping tents under the wings of each aircraft, stretching along the entire grounds of the airport. AirVenture truly is a summer camp for #AvGeeks.

A large crowd of plane enthusiasts is pictured in the foreground walking around and into a large grey military style transport aircraft on display. The nose of the aircraft is opened vertically allowing for the crowd to walk into its interior.

Boeing Plaza, the central display area at AirVenture, featuring a C-5 Galaxy transport with its nose open, and a C-17 Globemaster III, at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

The main tarmac at the airport is converted into Boeing Plaza, the central display area featuring the biggest and most exciting aircraft: C-17 Globetrotter III, SR-71 Blackbird, F-117 Nighthawk, DC-3, and many, many more. One year, I even got to see the Concorde fly into and out of this teeny regional airport in the middle of Wisconsin.

There are countless opportunities to interact with the pilots and other aviation enthusiasts including sitting in cockpits, checking out the interiors and exteriors of various airplanes, and chances to fly in vintage aircraft including an original 1929 Ford Trimotor and a B-17 Flying Fortress from 1945. And, of course, no matter my age, I posed with anything and everything I found interesting, including a T-38 Talon stationed in front of the NASA pavilion and the inside of an ecoDemonstrator.

A man wearing a NASA t-shirt sits in a plane cockpit. The cockpit is a metallic grey and covered in hundreds of knobs, throttles, and buttons with two large windows looking forward towards the nose of the plane.

Michael sitting in the cockpit of Boeing’s 777-200ER ecoDemonstrator at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

Inside the various hangars are hundreds of aviation vendors, exhibitors, and storefronts, ranging from avionics manufacturers to social clubs/societies, wooden model companies, and all the pilot accessories imaginable.

A man in a NASA polo shirt and lanyard takes a selfie in front of a white and blue emblazoned NASA aircraft and a large building with the red white and blue NASA logo imprinted on it.

Michael standing in front of NASA’s SR22 aircraft at the NASA pavilion at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

This year’s theme for the NASA pavilion was “Faces of Flight”. Throughout the week, we had meet-and-greets with leaders, researchers, engineers, and even an astronaut or two, hands-on educational experiences for guests of all ages, giveaways, and models of our aircraft, spacecraft, and more, including a model of the Ingenuity Mars Helicopter and the Space Launch System rocket.

Aside from the events in the NASA pavilion, we participated in a number of panels like Women@NASA, where women leaders from the Aeronautics Research Mission Directorate talked about NASA’s aviation research portfolio, activities taking places at NASA centers, and their personal experiences as leaders.

If you’re interested in the future of aviation—supersonic flight, advanced air mobility, and so much more—come see us at Oshkosh!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Next Gen @ NASA: Celebrating National Intern Day

To celebrate National Intern Day, we asked interns to share how they got their internship and their perspective and advice to the next generation of prospective NASA interns.

Meet our interns and check out their suggestions for the next generation.

Sarah Kilpatrick, STDCE-2 Data Intern

Sarah is a summer Surface Tension Driven Convection Experiment Data Intern at NASA. Her inspiration for applying for an internship came from a passion for science from an early age. “I grew up in a family that liked, enjoyed and appreciated science and the fun of it all,” she recalls. “I grew up watching PBS, NOVA, and other science shows, so when I saw NASA had opportunities for students like me, I was very interested.” 

Sarah’s advice to the next generation of NASA interns is one of perseverance and resilience.

Nicholas Natsoulas, Attitude Control Engineering Intern

Nicholas is a summer Attitude Control Engineering Intern at NASA. He wants to contribute to scientific innovation and discovery. “Overall, what inspired me to apply and come to work here was to contribute to the scientific exploration of space while learning about unique perspectives and innovative space discoveries.”

Nicholas’s advice for prospective NASA interns is to make the most out of your time here and to be a curious and eager learner.

“Use all the resources that are at your center and ask questions about projects you are working on. Don’t be afraid to talk to your mentor about your plans for the future and ask for any advice you may need, as they are more than willing to help you during your time here,” says Nicholas.

One man standing at an office desk pointing at laptop screen and one man sitting on chair working from laptop.

Nicholas and his mentor, Brent Faller, are using software to inform design decisions on a variety of spacecraft.

Nylana Murphy, former Additive Manufacturing Engineering Intern

As an American Indian College Fund ambassador and a Navajo engineer, Nylana Murphy hopes her internship story will inspire others to pursue a career in aerospace.

After attending the American Indian Science Engineering Society Conference, Nylana secured an internship in the additive manufacturing research laboratory at NASA Marshall.

 “My internships have helped me get to where I am,” she says, “There is a career for everyone, where their dreams can become reality. Those dreams WILL become a reality.”

A Navajo woman sits with her hands clasped on her lap. She is wearing a black t-shirt with a NASA logo and a turquoise ring and bracelet.

You might be wondering: what happens after a NASA internship Here’s what two of our former interns did.

Loral O’Hara, Astronaut, former intern

Lorel interned at NASA JPL in 2003, and at NASA Goddard in 2004. She earned science degrees from both the University of Kansas and Purdue University.

As a research and project engineer, O’Hara reported for duty in August 2017 and completed two years of training as an Astronaut Candidate. She is projected to fly in Soyuz missions as a NASA astronaut soon.

If she could go back in time, Loral says she would tell her younger self to enjoy the opportunities that come her way—and never stop looking for new ones. “Enjoy the whole journey of…figuring out what it is that you like to do and exploring all different kinds of things.”

A woman is in a pool with a helmet and other protective gear on.

Jeff Carlson, Assembly, Test, Launch Operations Engineer

The “7 Minutes of Terror” video piqued Jeff Carlson’s interest in working at JPL. He thought, "That's the coolest thing I've ever heard of. I've got to go be a part of that in some way." While interning at the Jet Propulsion Laboratory, he worked on Starshade, a sunflower-shaped device used to block starlight in order to reveal planets orbiting a star. Later, he went on to work on the team tasked with assembling and testing the “head” and “neck” (officially called the Remote Sensing Mast) for the Mars 2020 rover.

A man stands next to a testbed version of the Mars 2020 rover. His hair is pulled back in a ponytail and he is wearing a white lab coat and gloves.

Want to join us in exploring the secrets of the universe? Visit intern.nasa.gov to learn more about open opportunities and requirements!

Make sure to follow us on Tumblr for your regular dose of space!

Credits: Isabel Rodriguez, Glenn Research Center intern and Claire O'Shea, Johnson Space Center intern


Tags
2 years ago

Meet Our Superhero Space Telescopes!

While the first exoplanets—planets beyond our solar system—were discovered using ground-based telescopes, the view was blurry at best. Clouds, moisture, and jittering air molecules all got in the way, limiting what we could learn about these distant worlds.

A superhero team of space telescopes has been working tirelessly to discover exoplanets and unveil their secrets. Now, a new superhero has joined the team—the James Webb Space Telescope. What will it find? Credit: NASA/JPL-Caltech

To capture finer details—detecting atmospheres on small, rocky planets like Earth, for instance, to seek potential signs of habitability—astronomers knew they needed what we might call “superhero” space telescopes, each with its own special power to explore our universe. Over the past few decades, a team of now-legendary space telescopes answered the call: Hubble, Chandra, Spitzer, Kepler, and TESS.

In a cartoon of space, shown as black and gray, space telescopes rise out of the darkness one by one. One by one, their names are revealed: Hubble, Chandra, Spitzer, Kepler, and TESS.

Much like scientists, space telescopes don't work alone. Hubble observes in visible light—with some special features (superpowers?)—Chandra has X-ray vision, and TESS discovers planets by looking for tiny dips in the brightness of stars.

An animated cartoon shows our Superhero space telescopes circling a crowd of multicolored exoplanets. Each of their observation beams is shown lighting up one by one in beautiful colors as they observe planets in the group.

Kepler and Spitzer are now retired, but we're still making discoveries in the space telescopes' data. Legends! All were used to tell us more about exoplanets. Spitzer saw beyond visible light into the infrared and was able to make exoplanet weather maps! Kepler discovered more than 3,000 exoplanets.

Three space telescopes studied one fascinating planet and told us different things. Hubble found that the atmosphere of HD 189733 b is a deep blue. Spitzer estimated its temperature at 1,700 degrees Fahrenheit (935 degrees Celsius). Chandra, measuring the planet’s transit using X-rays from its star, showed that the gas giant’s atmosphere is distended by evaporation.

A cartoon exoplanet is shown as big and bright blue. It is with three space telescopes that studied it: Spitzer, Hubble, and Chandra. Exclamation marks light up as it reveals what each telescope found. Spitzer: 1,700 degrees F (933 degrees C) and 5,400 miles per hour winds (and 8,300 kph wind). Hubble: Blue clouds, raining glass. Chandra: evaporating atmosphere.

Adding the James Webb Space Telescope to the superhero team will make our science stronger. Its infrared views in increased ranges will make the previously unseen visible.

A cartoon animation shows the five Superhero space telescopes circling slowly in the dark of space. Slowly, a new Superhero lowers into the middle of the circle. It is labeled James Webb, and as it lowers, streams of light shoot out. The space background goes from black and grays to streams of beautiful colors.

Soon, Webb will usher in a new era in understanding exoplanets. What will Webb discover when it studies HD 189733 b? We can’t wait to find out! Super, indeed.

A cartoon animation pans across exoplanet after exoplanet as the cosmos is revealed in multitudes of colors and light. Some planets are spinning quickly, others are moving more slowly. Each one is a different color and size.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

See the Universe in a New Way with the Webb Space Telescope's First Images

Are you ready to see unprecedented, detailed views of the universe from the James Webb Space Telescope, the largest and most powerful space observatory ever made? Scroll down to see the first full-color images and data from Webb. Unfold the universe with us. ✨

Carina Nebula

See The Universe In A New Way With The Webb Space Telescope's First Images

This landscape of “mountains” and “valleys” speckled with glittering stars, called the Cosmic Cliffs, is the edge of the star-birthing Carina Nebula. Usually, the early phases of star formation are difficult to capture, but Webb can peer through cosmic dust—thanks to its extreme sensitivity, spatial resolution, and imaging capability. Protostellar jets clearly shoot out from some of these young stars in this new image.

Southern Ring Nebula

See The Universe In A New Way With The Webb Space Telescope's First Images

The Southern Ring Nebula is a planetary nebula: it’s an expanding cloud of gas and dust surrounding a dying star. In this new image, the nebula’s second, dimmer star is brought into full view, as well as the gas and dust it’s throwing out around it. (The brighter star is in its own stage of stellar evolution and will probably eject its own planetary nebula in the future.) These kinds of details will help us better understand how stars evolve and transform their environments. Finally, you might notice points of light in the background. Those aren’t stars—they’re distant galaxies.

Stephan’s Quintet

See The Universe In A New Way With The Webb Space Telescope's First Images

Stephan’s Quintet, a visual grouping of five galaxies near each other, was discovered in 1877 and is best known for being prominently featured in the holiday classic, “It’s a Wonderful Life.” This new image brings the galaxy group from the silver screen to your screen in an enormous mosaic that is Webb’s largest image to date. The mosaic covers about one-fifth of the Moon’s diameter; it contains over 150 million pixels and is constructed from almost 1,000 separate image files. Never-before-seen details are on display: sparkling clusters of millions of young stars, fresh star births, sweeping tails of gas, dust and stars, and huge shock waves paint a dramatic picture of galactic interactions.

WASP-96 b

See The Universe In A New Way With The Webb Space Telescope's First Images

WASP-96 b is a giant, mostly gas planet outside our solar system, discovered in 2014. Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) measured light from the WASP-96 system as the planet moved across the star. The light curve confirmed previous observations, but the transmission spectrum revealed new properties of the planet: an unambiguous signature of water, indications of haze, and evidence of clouds in the atmosphere. This discovery marks a giant leap forward in the quest to find potentially habitable planets beyond Earth.

Webb's First Deep Field

See The Universe In A New Way With The Webb Space Telescope's First Images

This image of galaxy cluster SMACS 0723, known as Webb’s First Deep Field, looks 4.6 billion years into the past. Looking at infrared wavelengths beyond Hubble’s deepest fields, Webb’s sharp near-infrared view reveals thousands of galaxies—including the faintest objects ever observed in the infrared—in the most detailed view of the early universe to date. We can now see tiny, faint structures we’ve never seen before, like star clusters and diffuse features and soon, we’ll begin to learn more about the galaxies’ masses, ages, histories, and compositions.

These images and data are just the beginning of what the observatory will find. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

Make sure to follow us on Tumblr for your regular dose of space—and for milestones like this!

Credits: NASA, ESA, CSA, and STScI


Tags
2 years ago

The Adventures of Commander Moonikin Campos

Artemis I will be an enormous step toward humanity’s return to the Moon. This mission will be the first flight test of the integrated Space Launch System rocket and the Orion spacecraft — the same system that will send future Artemis astronauts to the Moon. That’s why NASA needs someone capable to test the vehicle. Someone with the necessary experience. Someone with the Right Stuff. (Or... stuffing).

The Adventures Of Commander Moonikin Campos

Meet Commander Moonikin Campos. He is a manikin, or a replica human body. Campos is named after Arturo Campos, a trailblazing NASA employee who worked on Apollo missions. Arturo Campos’ skill as an electrical engineer was pivotal in the rescue efforts to help guide the Apollo 13 astronauts home.

The Adventures Of Commander Moonikin Campos

As the leader of the mission, Commander Campos will be flying in the pilot’s seat for the length of the mission: a journey of 1.3 million miles (~2 million km) around the Moon and back to Earth. He's spent years training for this mission and he loves a challenge. Campos will be equipped with two radiation sensors and will have additional sensors under his headrest and behind his seat to record acceleration and vibration data throughout the mission.

The Adventures Of Commander Moonikin Campos

Traveling with Campos are his quirky companions, Zohar and Helga. They’re part of a special experiment to measure radiation outside of the protective bubble of Earth’s atmosphere. Together with their commander, they’re excited to play a role in humanity’s next great leap. (And hopefully they can last the entire flight without getting on each other's nerves.)

The Adventures Of Commander Moonikin Campos

Will our brave explorers succeed on their mission and ensure the success of future Artemis operations? Can Commander Moonikin Campos live up to the legacy of his heroic namesake?? And did anyone remember to bring snacks??? Get the answers in this thrilling three-part series!

The Adventures Of Commander Moonikin Campos

In the first part of Commander Moonikin Campos’ journey, our trailblazing hero prepares for liftoff from NASA’s spaceport at Kennedy Space Center  in Florida, gets acquainted with the new hardware aboard the Orion spacecraft, and meets his crewmates: Helga and Zohar!

The Adventures Of Commander Moonikin Campos

In the second part of the trio’s adventure, Campos, Helga, and Zohar blast out of the Earth’s atmosphere with nearly 8.8 million pounds (4 million kg) of thrust powering their ascent. Next stop: the Moon!

The Adventures Of Commander Moonikin Campos

In the final chapter of the Artemis I mission, Campos and friends prepare for their return home, including the last and most dangerous part of their journey: reentering Earth’s atmosphere at a screeching 25,000 miles per hour (40,000 kph).

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

You Are Made of Stardust

Though the billions of people on Earth may come from different areas, we share a common heritage: we are all made of stardust! From the carbon in our DNA to the calcium in our bones, nearly all of the elements in our bodies were forged in the fiery hearts and death throes of stars.

You Are Made Of Stardust

The building blocks for humans, and even our planet, wouldn’t exist if it weren’t for stars. If we could rewind the universe back almost to the very beginning, we would just see a sea of hydrogen, helium, and a tiny bit of lithium.

The first generation of stars formed from this material. There’s so much heat and pressure in a star’s core that they can fuse atoms together, forming new elements. Our DNA is made up of carbon, hydrogen, oxygen, nitrogen, and phosphorus. All those elements (except hydrogen, which has existed since shortly after the big bang) are made by stars and released into the cosmos when the stars die.

You Are Made Of Stardust

Each star comes with a limited fuel supply. When a medium-mass star runs out of fuel, it will swell up and shrug off its outer layers. Only a small, hot core called a white dwarf is left behind. The star’s cast-off debris includes elements like carbon and nitrogen. It expands out into the cosmos, possibly destined to be recycled into later generations of stars and planets. New life may be born from the ashes of stars.

You Are Made Of Stardust

Massive stars are doomed to a more violent fate. For most of their lives, stars are balanced between the outward pressure created by nuclear fusion and the inward pull of gravity. When a massive star runs out of fuel and its nuclear processes die down, it completely throws the star out of balance. The result? An explosion!

Supernova explosions create such intense conditions that even more elements can form. The oxygen we breathe and essential minerals like magnesium and potassium are flung into space by these supernovas.

You Are Made Of Stardust

Supernovas can also occur another way in binary, or double-star, systems. When a white dwarf steals material from its companion, it can throw everything off balance too and lead to another kind of cataclysmic supernova. Our Nancy Grace Roman Space Telescope will study these stellar explosions to figure out what’s speeding up the universe’s expansion. 

This kind of explosion creates calcium – the mineral we need most in our bodies – and trace minerals that we only need a little of, like zinc and manganese. It also produces iron, which is found in our blood and also makes up the bulk of our planet’s mass!

You Are Made Of Stardust

A supernova will either leave behind a black hole or a neutron star – the superdense core of an exploded star. When two neutron stars collide, it showers the cosmos in elements like silver, gold, iodine, uranium, and plutonium.

You Are Made Of Stardust

Some elements only come from stars indirectly. Cosmic rays are nuclei (the central parts of atoms) that have been boosted to high speed by the most energetic events in the universe. When they collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron and beryllium – from breaking star-made atoms into smaller ones.

Half a dozen other elements are created by radioactive decay. Some elements are radioactive, which means their nuclei are unstable. They naturally break down to form simpler elements by emitting radiation and particles. That’s how we get elements like radium. The rest are made by humans in labs by slamming atoms of lighter elements together at super high speeds to form heavier ones. We can fuse together elements made by stars to create exotic, short-lived elements like seaborgium and einsteinium.

You Are Made Of Stardust

From some of the most cataclysmic events in the cosmos comes all of the beauty we see here on Earth. Life, and even our planet, wouldn’t have formed without them! But we still have lots of questions about these stellar factories. 

In 2006, our Stardust spacecraft returned to Earth containing tiny particles of interstellar dust that originated in distant stars, light-years away – the first star dust to ever be collected from space and returned for study. You can help us identify and study the composition of these tiny, elusive particles through our Stardust@Home Citizen Science project.

Our upcoming Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies, all while exploring many other cosmic questions. Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Tour the Ocean through the Art of Sound

The ocean is one of the largest ecosystems on our planet. From eye-catching waves to the darkness of the twilight zone, it’s a place filled with mystery and rapid change.

An aerial view of a coastline and ocean are the background to text which reads "Sounds of the Sea".

For a scientist studying ocean color at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, there was one more question–what does it sound like?

Before long, a “symphonic ocean experience” was born, combining satellite imagery, ocean color data and programming expertise. Learn more about how data gets converted to music and sound here:

This World Oceans Day, enjoy a tour of the ocean set to sound. Here we go:

Sounds of the Sea
SoundCloud
For World Oceans Month, enjoy a moment of zen with a symphonic tour of the ocean. Experience the swirls off the coast of Río de la Plata to

Bering Sea

This melody explores the phytoplankton blooms in the western Bering Sea along the coast of the Kamchatka Peninsula collected by Aqua/MODIS on May 15, 2021. The melody created for this image was aimed at capturing the movement of the eddies or the circular movements of water. Data came from the image’s red, green, and blue channels.

Rio de la Plata

This melody explores a spring bloom in the South Atlantic Ocean off the coast of Argentina, Uruguay, and Brazil, lending the water many different shades of green, blue, and brown. The Rio de la Plata estuary in the northwest corner of the above image gets most of its tan coloration from sediments suspended in the water. The melody paired with the data evokes the sediment plumes and swirls happening off the coast.

Coral Sea

Data for the sounds of the Coral Sea were collected over the course of one year from the Aqua/Modis satellite. The information was extracted from a series of 32-day rolling averages for the year 2020, displaying the movement of chlorophyll a data.

Chlorophyll a is a specific form of chlorophyll used in photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light. It is a poor absorber of green and near-green portions of the spectrum, and that’s why it appears green.

Western Australia

Off the coast of western Australia is the appearance of swirls in the ocean. To catch the movement of the Indian Ocean, data was collected from 31 days of imagery examining blue wavelengths of light. The information was gathered from the Suomi-NPP/VIIRS instrument aboard the Joint Polar Satellite System (JPSS) series of spacecraft.

More moments of zen

Looking for more moments of zen? Explore them with NASA’s Soundcloud page, where many are out of this world. Curious on how we get these breathtaking ocean images? Take time to read about Goddard Oceanographer Norman Kuring and how he helped create them.


Tags
2 years ago

A Space Starburst

A Space Starburst

Welcome to one of the most active galaxies in our cosmic neighborhood: NGC 1569. This starburst galaxy creates stars at a rate 100 times faster than in our own galaxy, the Milky Way – and it’s been doing so for the past 100 million years.

NGC 1569 is about 11 million light-years away in the constellation Camelopardalis. Find out more about this sparkling galaxy here.

For the past few weeks, our Hubble Space Telescope explored #GalaxiesGalore! You can find more galaxy content and spectacular new images on Hubble’s Twitter, Facebook, and Instagram.

Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and A. Aloisi (STScI/ESA)


Tags
2 years ago

Tune in, Starliner! How NASA’s Near Space Network Powers Communications

A United Launch Alliance Atlas V rocket lifts off from Cape Canaveral Space Force Station. As the rocket launches, white clouds form below and to the left of it.

On May 19, 2022, our partners at Boeing launched their Starliner CST-100 spacecraft to the International Space Station as a part of our Commercial Crew Program. This latest test puts the company one step closer to joining the SpaceX Crew Dragon in ferrying astronauts to and from the orbiting laboratory. We livestreamed the launch and docking at the International Space Station, but how? Let’s look at the communications and navigation infrastructure that makes these missions possible.

Third Generation Tracking Data Relay Satellite (TDRS)

Primary voice and data communications are handled by our constellation of Tracking and Data Relay Satellites (TDRS), part of our Near Space Network. These spacecraft relay communications between the crewed vehicles and mission controllers across the country via terrestrial connections with TDRS ground stations in Las Cruces, New Mexico, and Guam, a U.S. territory in the Pacific Ocean.

TDRS, as the primary communications provider for the space station, is central to the services provided to Commercial Crew vehicles. All spacecraft visiting the orbiting laboratory need TDRS services to successfully complete their missions.

Several people, seated in the Control Center, look up at screens on the wall that show a view of the launchpad, times, and other information.

During launches, human spaceflight mission managers ensure that Commercial Crew missions receive all the TDRS services they need from the Near Space Operations Control Center at our Goddard Space Flight Center in Greenbelt, Maryland. There, communications engineers synthesize network components into comprehensive and seamless services for spacecraft as they launch, dock, undock, and deorbit from the space station.

A room with desks. The desks have several multi-monitor computer setups on them, and there are television screens mounted on the ceiling.

Nearby, at our Flight Dynamics Facility, navigation engineers track the spacecraft on their ascent, leveraging years of experience supporting the navigation needs of crewed missions. Using tracking data sent to our Johnson Space Center in Houston and relayed to Goddard, these engineers ensure astronaut safety throughout the vehicles’ journey to the space station.

Additionally, our Search and Rescue office monitors emergency beacons on Commercial Crew vehicles from their lab at Goddard. In the unlikely event of a launch abort, the international satellite-aided search and rescue network will be able to track and locate these beacons, helping rescue professionals to return the astronauts safely. For this specific uncrewed mission, the search and rescue system onboard the Boeing Starliner will not be activated until after landing for ground testing.

An aerial view of Boeing’s CST-100 Starliner spacecraft on the the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida.

To learn more about NASA’s Space Communications and Navigation (SCaN) services and technologies, visit  https://www.nasa.gov/directorates/heo/scan/index.html. To learn more about NASA’s Near Space Network, visit https://esc.gsfc.nasa.gov/projects/NSN.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Prepare to be mesmerized… 😵‍💫

Prepare To Be Mesmerized… 😵‍💫

Feast your eyes on the magnificent galaxy M51, also known as the Whirlpool Galaxy! This hypnotic spiral galaxy was captured in visible light with Hubble’s Advanced Camera for Surveys. Living up to its nickname, the Whirlpool Galaxy has the traits of a typical spiral galaxy, like beautifully curving arms, pink star-forming regions, and brilliant blue strands of star clusters.

The Whirlpool Galaxy is located about 31 million light-years away in the constellation Canes Venatici.

Discover more about the Whirlpool Galaxy here.

Right now, the Hubble Space Telescope is exploring #GalaxiesGalore! Find more galaxy content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.

Credit: NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA)


Tags
2 years ago

Astrobiology: The Story of our Search for Life in the Universe

Astrobiologists study the origin, evolution, and distribution of life in the universe. This includes identifying evidence left behind by life that once survived on the ancient Earth, and extends to the search for life beyond our planet.

When looking for signs of life on other worlds, what are they looking for?

Things called biosignatures. For example, when you sign a piece of paper, your signature is evidence of your existence. Similarly, biosignatures are anything that can prove that life was once, or is, present in an environment.

Astrobiology: The Story Of Our Search For Life In The Universe

If we were very very lucky, we might spot something we know is life with a powerful telescope or receive a "phone call" or radio signal from alien civilizations. Those types of biosignatures would be obvious. But they would only let us identify advanced life.

Astrobiology: The Story Of Our Search For Life In The Universe

For most of Earth’s history (billions of years), single-celled life like bacteria and archaea have been around. Humans have only been making radio transmissions for hundreds of years. So we have a better chance of finding life if we look for signs that have been around for very long periods of time.

Astrobiology: The Story Of Our Search For Life In The Universe

Patterns in ancient rocks that were created by life are a great example. That can be anything like a dinosaur footprint or structures built by microorganisms, like stromatolites.

Astrobiology: The Story Of Our Search For Life In The Universe

Molecules can also be biosignatures, like DNA left behind for detectives to discover. But DNA doesn’t last very long on its own in most environments, so other molecules like lipids (like natural oils, wax, and fat) might be a better choice if you are looking for signatures of life from millions (or billions) of years ago.

Even the balance of gases in a planet’s atmosphere can be a sign of past or present life. On Earth, biology plays a major role in maintaining the delicate composition of gases like nitrogen, oxygen, and carbon dioxide in the air that we breathe.

These are just a few examples of signs astrobiologists look for when searching for life amongst the stars! Research into these biosignatures inform many of our biggest missions, from observatories like the Hubble Space Telescope and the Webb Space Telescope to our Mars Sample Return endeavor.

Want to learn more about the search for life? Check out the latest issue of our comic-book style graphic history novel, Astrobiology: The Story of our Search for Life in the Universe. This new chapter is all about biosignatures.

Explore life in the universe with us by following NASA Astrobiology on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Meet NGC 2841

Meet NGC 2841

Location: In the constellation Ursa Major

Type: Flocculent spiral galaxy

Discovered by: William Herschel

NGC 2841 is a beautiful example of a flocculent spiral galaxy – a type with discontinuous, featherlike, and patchy arms. A bright cusp of starlight distinguishes the galaxy's center from the dust lanes that outline the group of almost white middle-aged stars. The far younger blue stars trace the spiral arms.

Find out more information about NGC 2841 here.

Right now, the Hubble Space Telescope is exploring #GalaxiesGalore! Find more galaxy content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.

Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: M. Crockett and S. Kaviraj (Oxford University, UK), R. O'Connell (University of Virginia), B. Whitmore (STScI), and the WFC3 Scientific Oversight Committee


Tags
3 years ago
Take A Good Look: This Is The Black Hole At The Center Of Our Galaxy.

Take a good look: this is the black hole at the center of our galaxy.

In the inset image, gas in the glowing orange ring surrounds the black hole's event horizon, a boundary from which nothing can escape. The ring is created by light bending in the intense gravity around Sagittarius A*, which has a mass some four million times greater than our Sun. This groundbreaking image of Sagittarius A* was taken by the Event Horizon Telescope team with data from telescopes around the world. After the EHT's iconic image of M87*, released in 2019, this is only the second time a supermassive black hole has been directly observed with its shadow.

The wider look at the space around Sagittarius A* includes data contributed by several NASA missions. The orange specks and purple tendrils were captured in infrared light by the Hubble Space Telescope, and the blue clouds represent data from our orbiting Chandra X-ray Observatory.

Fall in to the whole story: https://www.nasa.gov/mission_pages/chandra/images/sagittarius-a-nasa-telescopes-support-event-horizon-telescope-in-studying-milky-ways.html

Make sure to follow us on Tumblr for your regular dose of space!

CREDIT: X-ray: NASA/CXC/SAO; IR: NASA/HST/STScI. Inset: Radio (EHT Collaboration)


Tags
3 years ago

A Beginner’s Guide to Advanced Air Mobility

A Beginner’s Guide To Advanced Air Mobility

Soaring over traffic in an air taxi, receiving packages faster, and participating in a sustainable, safer mode of transportation: all could be possible with a revolutionary new type of air transportation system in development called Advanced Air Mobility (AAM).

AAM could include new aircraft developed by industry, called electric vertical takeoff and landing vehicles, or eVTOLs, for use in passenger, package, or cargo delivery. It may also include new places for these aircraft to take off and land called vertiports.

Our work in Advanced Air Mobility will transform the way people and goods will move through the skies. This includes using Advanced Air Mobility for public good missions such as disaster, medical, and wildfire response.

What is Advanced Air Mobility?

Our vision for Advanced Air Mobility is to map out a safe, accessible, and affordable new air transportation system alongside industry, community partners, and the Federal Aviation Administration.

A Beginner’s Guide To Advanced Air Mobility

Once developed, passengers and cargo will travel on-demand in innovative, automated aircraft called eVTOLs, across town, between neighboring cities, or to other locations typically accessed today by car.  

What are the benefits of Advanced Air Mobility?

The addition of Advanced Air Mobility will benefit the public in several ways: easier access for travelers between rural, suburban, and urban communities; rapid package delivery; reduced commute times; disaster response, and new solutions for medical transport of passengers and supplies.

A Beginner’s Guide To Advanced Air Mobility

What are the challenges associated with Advanced Air Mobility?

Various NASA simulation and flight testing efforts will study noise, automation, safety, vertiports, airspace development and operations, infrastructure, and ride quality, along with other focus areas like community integration.

These areas all need to be further researched before Advanced Air Mobility could be integrated into our skies. We’re helping emerging aviation markets navigate the creation of this new transportation system.

When will Advanced Air Mobility take off?

We provide various test results to the FAA to help with new policy and standards creation. We aim to give industry and the FAA recommendations for requirements to build a scalable Advanced Air Mobility system to help enable the industry to flourish by 2030.

A Beginner’s Guide To Advanced Air Mobility

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Our Weird and Wonderful Galaxy of Black Holes

Black holes are hard to find. Like, really hard to find. They are objects with such strong gravity that light can’t escape them, so we have to rely on clues from their surroundings to find them.

When a star weighing more than 20 times the Sun runs out of fuel, it collapses into a black hole. Scientists estimate that there are tens of millions of these black holes dotted around the Milky Way, but so far we’ve only identified a few dozen. Most of those are found with a star, each circling around the other. Another name for this kind of pair is a binary system.That’s because under the right circumstances material from the star can interact with the black hole, revealing its presence. 

The visualization above shows several of these binary systems found in our Milky Way and its neighboring galaxy. with their relative sizes and orbits to scale. The video even shows each system tilted the way we see it here from our vantage point on Earth. Of course, as our scientists gather more data about these black holes, our understanding of them may change.   

The close orbit of a star and black hole causes the star to lose part of its outer layers to the black hole. A panning shot comes from behind a glowing star and reveals a black hole pulling a stream of stellar material into a swirling, hot disk around it.

If the star and black hole orbit close enough, the black hole can pull material off of its stellar companion! As the material swirls toward the black hole, it forms a flat ring called an accretion disk. The disk gets very hot and can flare, causing bright bursts of light.

In this visualization, an off-white, round star orbits around a black hole with glowing orange material encircling it. The black hole is pulling glowing white material off the star as they orbit each other. V404 Cygni is a black hole that erupted in 1989 and 2015 with an X-ray nova. It lies at a distance of 8,200 light-years. The black hole has a mass of 12 times the Sun, and its companion star has just under two Sun’s worth of mass. They orbit each other every 6.5 days.

V404 Cygni, depicted above, is a binary system where a star slightly smaller than the Sun orbits a black hole 10 times its mass in just 6.5 days. The black hole distorts the shape of the star and pulls material from its surface. In 2015, V404 Cygni came out of a 25-year slumber, erupting in X-rays that were initially detected by our Swift satellite. In fact, V404 Cygni erupts every couple of decades, perhaps driven by a build-up of material in the outer parts of the accretion disk that eventually rush in. 

An illustration depicts what astronomers think is happening within a binary system with a high-mass star and a stellar-mass black hole. A huge, blue-white star radiates strands of 'wind' from its perimeter, with a bright object just to its left. The bright object is the shining disk of material that has collected from the star’s wind and swirls around the black hole before falling in.

In other cases, the black hole’s companion is a giant star with a strong stellar wind. This is like our Sun’s solar wind, but even more powerful. As material rushes out from the companion star, some of it is captured by the black hole’s gravity, forming an accretion disk.

A bright blue star and a black hole with a swirling disk of hot, glowing material orbit each other in this visualization of the Cygnus X-1 system. Cygnus X-1 is the first confirmed black hole. It lies at a distance of 7,200 light-years. The black hole has a mass of 21 times the Sun and its companion star has 40 Sun’s worth of mass. They orbit each other every 5.6 days.

A famous example of a black hole powered by the wind of its companion is Cygnus X-1. In fact, it was the first object to be widely accepted as a black hole! Recent observations estimate that the black hole’s mass could be as much as 20 times that of our Sun. And its stellar companion is no slouch, either. It weighs in at about 40 times the Sun.

Two very different black hole systems are shown together in this visualization. In one, called GRS 1915, a bright star and a black hole with a large swirling disk of glowing material orbit each other, filling nearly the whole image. They only complete a small portion of their orbit in the few seconds the GIF plays. The second system is much smaller one called H1705. It has a small, bead-sized star orbiting a tiny black hole that has a small disk of material. The small system completes three orbits in the few seconds the GIF plays.

We know our galaxy is peppered with black holes of many sizes with an array of stellar partners, but we've only found a small fraction of them so far. Scientists will keep studying the skies to add to our black hole menagerie.

Curious to learn more about black holes? Follow NASA Universe on Twitter and Facebook to keep up with the latest from our scientists and telescopes.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

CAPSTONE: Testing a Path to the Moon

CAPSTONE: Testing A Path To The Moon

Before NASA's Artemis astronauts head to the Moon, a microwave oven-sized spacecraft will help lead the way. The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment, or CAPSTONE, is a CubeSat mission set to launch in spring of 2022. For at least six months, the small spacecraft will fly a unique elongated path around the Moon. Its trajectory—known as a near rectilinear halo orbit—has never been flown before! Once tried and tested, the same orbit will be home to NASA’s future lunar space station Gateway. Here are five things to know:

1. The 55-pound (25 kg) spacecraft is equipped with solar arrays, a camera, and antennae for communication and navigation.

CAPSTONE: Testing A Path To The Moon

2. Powerful thrusters will help propel the CubeSat toward the Moon.

CAPSTONE: Testing A Path To The Moon

3. CAPSTONE will fly a unique elongated path around the Moon for at least six months.

CAPSTONE: Testing A Path To The Moon

4. At its closest approach, it will come within 2,100 miles (3,380 km) of the Moon's North Pole.

CAPSTONE: Testing A Path To The Moon

5. The same orbit will be home to Gateway— our future outpost for Artemis astronauts heading to the Moon and beyond.

CAPSTONE: Testing A Path To The Moon

CAPSTONE is commercially owned and operated by Advanced Space in Westminster, Colorado. NASA’s Small Spacecraft Technology program within the agency’s Space Technology Mission Directorate funds the demonstration mission. The program is based at NASA’s Ames Research Center in California’s Silicon Valley. The development of CAPSTONE’s navigation technology is supported by NASA’s Small Business Innovation Research and Small Business Technology Transfer program. The Artemis Campaign Development Division within NASA’s Exploration Systems Development Mission Directorate funds the launch and supports mission operations. The Launch Services Program at NASA’s Kennedy Space Center in Florida manages the launch.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

A Beginner’s Guide to Sustainable Aviation

Do you dream of catching a short flight between cities or journeying across the globe? The aviation industry currently makes up 2-3% of all carbon emissions, but the shift toward electric and hybrid aircraft will help tackle climate change and minimize the environmental impacts of commercial aviation.  

Sustainable flight will revolutionize the way we travel. From battery-powered aircraft that reduce fuel consumption, to new lightweight materials that can improve safety and efficiency during flight, here are a few important things to know about the world of sustainable aviation, and what it takes to make air travel cleaner and safer for our planet.

What is Electrified Aircraft Propulsion?

A Beginner’s Guide To Sustainable Aviation

Similar to electric or hybrid-electric cars, sustainable aircraft designs feature electric powertrain systems – the system of components that help propel an aircraft during flight – to help reduce fuel use and emissions. Electrified Aircraft Propulsion (EAP) systems let aircraft work using electric motors, and alternative fuels, rather than relying solely on traditional jet engines burning fossil fuels. At NASA, we’re developing innovative EAP technologies ranging from advanced electric machines designed to increase power and performance to new aircraft materials developed to minimize weight and reduce fuel usage.

What are the challenges with electrifying flight?

A Beginner’s Guide To Sustainable Aviation
A Beginner’s Guide To Sustainable Aviation

Unlike electric vehicles on the ground, electrified aircraft face greater challenges when managing weight and heat while they’re running. In order to ensure maximum efficiency and safety, aircraft components must be designed with minimal weight to help reduce the amount of drag slowing the plane down and causing excess fuel burn. Electrified aircraft must also have advanced thermal management systems to help transfer heat effectively, and ensure onboard systems are kept cool to avoid damage.  

Our research and development of EAP technologies offer innovative solutions to these challenges. Designed to keep weight at a minimum, aircraft components such as the High Efficiency Megawatt Motor feature advanced technology that enable increased power and efficiency with three times less heat loss and weight than traditional aircraft motors. New material technologies such as electrical insulation also help transport heat more effectively to minimize heat buildup and are made of lightweight materials to ensure efficiency at high altitudes.

What are the benefits of sustainable aviation?

A Beginner’s Guide To Sustainable Aviation

From an environmental perspective, aircraft electrification offers unique opportunities to lower global emissions and minimize reliance on fossil fuels. The introduction of hybrid- or fully electric aircraft will significantly reduce overall fuel consumption by generating power and thrust via electricity and electric motors. Lightweight EAP systems and components can also help improve aircraft efficiency and reduce fuel burn, while using non-conventional, alternative fuels can help reduce harmful emissions. From an economic standpoint, EAP technologies could help strengthen commercial airliner markets with aircraft designed for around 180 passengers. Green technologies can also benefit both airline companies and you when you fly by potentially reducing aircraft maintenance and in-flight energy costs, making air travel more affordable.   

When will sustainable flight take off?

A Beginner’s Guide To Sustainable Aviation

To help turn visions of eco-friendly air travel into reality, we’re teaming up with industry to test EAP technologies on aircraft and introduce them to the U.S. commercial aviation fleet no later than 2035.  

Under our Electrified Powertrain Flight Demonstration (EPFD) project, we will conduct ground and flight tests using existing aircraft modified with EAP systems to assist in transitioning these technologies into commercial products. Flight demonstrations will also enable us to identify key risks and barriers associated with integrating new EAP systems into commercial airliners and develop new standards for future EAP aircraft as they take to the skies within the next decade. 

There you have it: a quick glimpse into the world of sustainable aviation, and the shift towards keeping our skies cleaner and safer. As we embark on this journey, climb aboard and stay up to date on our latest technology developments and future flight demonstrations.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

It's the International Day of Human Space Flight!

It's The International Day Of Human Space Flight!

In this image, NASA astronaut Sunita Williams, Expedition 32 flight engineer, appears to touch the bright Sun during the mission's third spacewalk outside the International Space Station. Japan Aerospace Exploration Agency astronaut Aki Hoshide is visible in the reflection of Williams' helmet visor.

Today, April 12, is the International Day of Human Space Flight—marking Yuri Gagarin's first flight in 1961, and the first space shuttle launch in 1981.

As we honor global collaboration in exploration, we're moving forward to the Moon & Mars under the Artemis Accords.

Sign up to send your name around the Moon aboard Artemis I at go.nasa.gov/wearegoing.


Tags
3 years ago

A View into the Past

A View Into The Past

Our Hubble Space Telescope just found the farthest individual star ever seen to date!

Nicknamed “Earendel” (“morning star” in Old English), this star existed within the first billion years after the universe’s birth in the big bang. Earendel is so far away from Earth that its light has taken 12.9 billion years to reach us, far eclipsing the previous single-star record holder whose light took 9 billion years to reach us.

Though Earendel is at least 50 times the mass of our Sun and millions of times as bright, we’d normally be unable to see it from Earth. However, the mass of a huge galaxy cluster between us and Earendel has created a powerful natural magnifying glass. Astronomers expect that the star will be highly magnified for years.

Earendel will be observed by NASA’s James Webb Space Telescope. Webb's high sensitivity to infrared light is needed to learn more about this star, because its light is stretched to longer infrared wavelengths due to the universe's expansion.


Tags
3 years ago

Cosmic Alphabet Soup: Classifying Stars

Cosmic Alphabet Soup: Classifying Stars

If you’ve spent much time stargazing, you may have noticed that while most stars look white, some are reddish or bluish. Their colors are more than just pretty – they tell us how hot the stars are. Studying their light in greater detail can tell us even more about what they’re like, including whether they have planets. Two women, Williamina Fleming and Annie Jump Cannon, created the system for classifying stars that we use today, and we’re building on their work to map out the universe.

Cosmic Alphabet Soup: Classifying Stars

By splitting starlight into spectra – detailed color patterns that often feature lots of dark lines – using a prism, astronomers can figure out a star’s temperature, how long it will burn, how massive it is, and even how big its habitable zone is. Our Sun’s spectrum looks like this:

Cosmic Alphabet Soup: Classifying Stars

Astronomers use spectra to categorize stars. Starting at the hottest and most massive, the star classes are O, B, A, F, G (like our Sun), K, M. Sounds like cosmic alphabet soup! But the letters aren’t just random – they largely stem from the work of two famous female astronomers.

Cosmic Alphabet Soup: Classifying Stars

Williamina Fleming, who worked as one of the famous “human computers” at the Harvard College Observatory starting in 1879, came up with a way to classify stars into 17 different types (categorized alphabetically A-Q) based on how strong the dark lines in their spectra were. She eventually classified more than 10,000 stars and discovered hundreds of cosmic objects!

Cosmic Alphabet Soup: Classifying Stars

That was back before they knew what caused the dark lines in spectra. Soon astronomers discovered that they’re linked to a star’s temperature. Using this newfound knowledge, Annie Jump Cannon – one of Fleming’s protégés – rearranged and simplified stellar classification to include just seven categories (O, B, A, F, G, K, M), ordered from highest to lowest temperature. She also classified more than 350,000 stars!

Cosmic Alphabet Soup: Classifying Stars

Type O stars are both the hottest and most massive in the new classification system. These giants can be a thousand times bigger than the Sun! Their lifespans are also around 1,000 times shorter than our Sun’s. They burn through their fuel so fast that they only live for around 10 million years. That’s part of the reason they only make up a tiny fraction of all the stars in the galaxy – they don’t stick around for very long.

Cosmic Alphabet Soup: Classifying Stars

As we move down the list from O to M, stars become progressively smaller, cooler, redder, and more common. Their habitable zones also shrink because the stars aren’t putting out as much energy. The plus side is that the tiniest stars can live for a really long time – around 100 billion years – because they burn through their fuel so slowly.

Cosmic Alphabet Soup: Classifying Stars

Astronomers can also learn about exoplanets – worlds that orbit other stars – by studying starlight. When a planet crosses in front of its host star, different kinds of molecules in the planet’s atmosphere absorb certain wavelengths of light.

By spreading the star’s light into a spectrum, astronomers can see which wavelengths have been absorbed to determine the exoplanet atmosphere’s chemical makeup. Our James Webb Space Telescope will use this method to try to find and study atmospheres around Earth-sized exoplanets – something that has never been done before.

Cosmic Alphabet Soup: Classifying Stars

Our upcoming Nancy Grace Roman Space Telescope will study the spectra from entire galaxies to build a 3D map of the cosmos. As light travels through our expanding universe, it stretches and its spectral lines shift toward longer, redder wavelengths. The longer light travels before reaching us, the redder it becomes. Roman will be able to see so far back that we could glimpse some of the first stars and galaxies that ever formed.

Learn more about how Roman will study the cosmos in our other posts:

Roman’s Family Portrait of Millions of Galaxies

New Rose-Colored Glasses for Roman

How Gravity Warps Light

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Visual 'Autocorrect' for NASA Space Telescope

Telescopes located both on the ground and in space continue to dazzle us with incredible images of the universe. We owe these sharp vistas to a series of brilliant astronomers, including Andrea Ghez – an astrophysicist and professor at UCLA – and the “Mother of Hubble,” Nancy Grace Roman.

Did you know that stars don’t actually twinkle? They only look like they do because their light has to travel through our turbulent atmosphere to reach our eyes. As the atmosphere shifts and swirls around, the light from distant stars is slightly refracted, or bent, in different directions. Sometimes it’s directed right at us, but sometimes it’s directed a bit to the side.

Visual 'Autocorrect' For NASA Space Telescope

It's like someone’s shining a flashlight toward you but moving it around slightly. Sometimes the beam is pointed right at you and appears very bright, and sometimes it's pointed a bit to either side of you and it appears dimmer. The amount of light isn't really changing, but it looks like it is.

Visual 'Autocorrect' For NASA Space Telescope

This effect creates a problem for ground-based telescopes. Instead of seeing sharp images, astronomers get fuzzy pictures. Special tech known as adaptive optics helps resolve pictures of space so astronomers can see things more clearly. It’s even useful for telescopes that are in space, above Earth’s atmosphere, because tiny imperfections in their optics can blur images, too.

Visual 'Autocorrect' For NASA Space Telescope

In 2020, Andrea Ghez was awarded a share of the Nobel Prize in Physics for devising an experiment that proved there’s a supermassive black hole embedded in the heart of our galaxy – something Hubble has shown is true of almost every galaxy in the universe! She used the W. M. Keck Observatory’s adaptive optics to track stars orbiting the unseen black hole.

Visual 'Autocorrect' For NASA Space Telescope

A woman named Nancy Grace Roman, who was NASA’s first chief astronomer, paved the way for telescopes that study the universe from space. An upcoming observatory named in her honor, the Nancy Grace Roman Space Telescope, will use a special kind of adaptive optics in its Coronagraph Instrument, which is a technology demonstration designed to block the glare from host stars and reveal dimmer orbiting planets.

Roman’s Coronagraph Instrument will come equipped with deformable mirrors that will serve as a form of visual "autocorrect" by measuring and subtracting starlight in real time. The mirrors will bend and flex to help counteract effects like temperature changes, which can slightly alter the shape of the optics.

Visual 'Autocorrect' For NASA Space Telescope

Other telescopes have taken pictures of enormous, young, bright planets orbiting far away from their host stars because they’re usually the easiest ones to see. Taking tech that’s worked well on ground-based telescopes to space will help Roman photograph dimmer, older, colder planets than any other observatory has been able to so far. The mission could even snap the first real photograph of a planet like Jupiter orbiting a Sun-like star!

Find out more about the Nancy Grace Roman Space Telescope on Twitter and Facebook, and learn about the person from which the mission draws its name.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Photographing Planets with the Roman Space Telescope

Nearly 100 years ago, astronomer Bernard Lyot invented the coronagraph – a device that made it possible to recreate a total solar eclipse by blocking the Sun’s light. That helped scientists study the Sun’s corona, which is the outermost part of our star’s atmosphere that’s usually hidden by bright light from its surface.

Photographing Planets With The Roman Space Telescope

Our Nancy Grace Roman Space Telescope, now under construction, will test out a much more advanced version of the same thing. Roman’s Coronagraph Instrument will use special masks to block the glare from host stars but allow the light from dimmer, orbiting planets to filter through. It will also have self-flexing mirrors that will measure and subtract starlight automatically.

Photographing Planets With The Roman Space Telescope

This glare-blocking prowess is important because planets can be billions of times dimmer than their host stars! Roman’s high-tech shades will help us take pictures of planets we wouldn’t be able to photograph using any other current telescopes.

Photographing Planets With The Roman Space Telescope

Other observatories mainly use this planet-hunting method, called direct imaging, from the ground to photograph huge, bright planets called “super-Jupiters” in infrared light. These worlds can be dozens of times more massive than Jupiter, and they’re so young that they glow brightly thanks to heat left over from their formation. That glow makes them detectable in infrared light.

Photographing Planets With The Roman Space Telescope

Roman will take advanced planet-imaging tech to space to get even higher-quality pictures. And while it’s known for being an infrared telescope, Roman will actually photograph planets in visible light, like our eyes can see. That means it will be able to see smaller, older, colder worlds orbiting close to their host stars. Roman could even snap the first-ever image of a planet like Jupiter orbiting a star like our Sun.

Astronomers would ultimately like to take pictures of planets like Earth as part of the search for potentially habitable worlds. Roman’s direct imaging efforts will move us a giant leap in that direction!

Photographing Planets With The Roman Space Telescope

And direct imaging is just one component of Roman’s planet-hunting plans. The mission will also use a light-bending method called microlensing to find other worlds, including rogue planets that wander the galaxy untethered to any stars. Scientists also expect Roman to discover 100,000 planets as they cross in front of their host stars!

Photographing Planets With The Roman Space Telescope

Find out more about the Nancy Grace Roman Space Telescope on Twitter and Facebook, and about the person from which the mission draws its name.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Kill the lights – We’re Simulating a Moonwalk!

At the bottom of a very dark swimming pool, divers are getting ready for missions to the Moon. Take a look at this a recent test in the Neutral Buoyancy Laboratory at NASA’s Johnson Space Center. NASA astronauts are no strangers to extreme environments. We best prepare our astronauts by exposing them to training environments here on Earth that simulate the 1/6th gravity, suit mobility, lighting and lunar terrain they'll expect to see on a mission to the Moon. Practice makes perfect.

Kill The Lights – We’re Simulating A Moonwalk!

The Neutral Buoyancy Laboratory at NASA's Johnson Space Center is where astronauts train for spacewalks, and soon, moonwalks.

When astronauts go to the Moon’s South Pole through NASA’s Artemis program, the Sun will only be a few degrees over the horizon, creating long, dark shadows. To recreate this environment, divers at the lab turned off the lights, put up black curtains on the pool walls to minimize reflection, and used powerful underwater lamps to simulate the environment astronauts might experience on lunar missions.

Kill The Lights – We’re Simulating A Moonwalk!

These conditions replicate the dark, long shadows astronauts could see and lets them evaluate the different lighting configurations. The sand at the bottom is common pool filter sand with some other specialized combinations in the mix.

Kill The Lights – We’re Simulating A Moonwalk!

This was a test with divers in SCUBA gear to get the lighting conditions right, but soon, NASA plans to conduct tests in this low-light environment using spacesuits.

Kill The Lights – We’re Simulating A Moonwalk!

Neutral buoyancy is the equal tendency of an object to sink or float. Through a combination of weights and flotation devices, an item is made to be neutrally buoyant and it will seem to "hover" under water. In such a state, even a heavy object can be easily manipulated, much as it is in the zero gravity of space, but will still be affected by factors such as water drag.

The Neutral Buoyancy Laboratory is 202 ft in length, 102 ft in width and 40 ft in depth (20 ft above ground level and 20 ft below) and holds 6.2 million gallons of water.


Tags
3 years ago

Roman’s Family Portrait of Millions of Galaxies

About 15 years ago, our Hubble Space Telescope captured this ultra-deep field image of space, revealing thousands of galaxies tucked away in a seemingly empty spot in the sky.

Roman’s Family Portrait Of Millions Of Galaxies

Now, imagine this view of the cosmos – and all the mysteries in it – at a scale 300 times larger than Hubble's.

Our upcoming Nancy Grace Roman Telescope could capture just that.

Roman’s Family Portrait Of Millions Of Galaxies

Roman recently released this gorgeous simulated image that gives us a preview of what the telescope could see. Each tiny speck represents a galaxy filled with billions of stars. And it’s more than just a pretty picture – scientists could learn a lot from an observation like this!

Roman’s Family Portrait Of Millions Of Galaxies

Since Roman can see much more of the sky at a time, it could create an ultra-deep field image that’s far larger than Hubble’s. So instead of revealing thousands of galaxies, Roman would see millions!

Roman’s Family Portrait Of Millions Of Galaxies

Roman’s ability to look far out into space with such an expansive view would help us better understand what the universe was like when it was young. For example, scientists could study a lot of cosmic transitions, like how galaxies switch from star-making factories to a quieter stage when star formation is complete and how the universe went from being mainly opaque to the brilliant starscape we see today.

Roman’s Family Portrait Of Millions Of Galaxies

And these are just a few of the mysteries Roman could help us solve!

Set to launch in the mid-2020s, our Nancy Grace Roman Space Telescope, is designed to unravel the secrets of dark energy and dark matter, search for and image exoplanets, and explore many topics in infrared astrophysics. You can learn about some of the other science Roman will do here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

From Racing Suits to Robotic Gloves: How to Gear Up with NASA Technology

Did you know you are surrounded by NASA technology? From your apartment building to the doctor’s office, and even in your cellphone camera, there is more space in your life than you think!

In the latest edition of Spinoff, we are introducing dozens of new ways NASA technology could cross your path. Whether you need an extra “hand” on the production line or a weatherproof jacket, check out how to gear up with technology made for space.

Grip-Strengthening Glove

A man in a blue polo shirt wears a white and yellow grip-strengthening glove, which he uses to lift and turn various objects, including a large wrench.

Robots are crucial to exploring space and other planets – they could even support astronauts and form the advance party for places humans have yet to reach. But the human machine is hard to replicate.

A collaboration with General Motors helped us build Robonaut 2 – and the design for this robot’s hands has been adapted into a robotic glove that helps manufacturing employees, such as automobile workers, reduce injuries and improve quality control.

The Swedish company Bioservo used the Robo-Glove technology to create the world’s first industrial-strength robotic glove for factory workers who perform repetitive manual tasks.

The Ironhand glove adds force to the user’s grip with artificial tendons and pressure sensors on the palm and the fingers.

The result? Reduced strain on the user’s own tendons and muscles, meaning fewer workplace stress injuries and better comfort for workers.

Temperature-Control Fabrics

NASA astronaut Anne McClain displays a U.S. spacesuit glove that consists of several layers for extra thermal protection and comfort. Thermofoil heaters are also attached inside each of the fingertips in one of the layers of the glove.

Spacesuits need major insulation and temperature control to protect astronauts on extravehicular activities, aka spacewalks. To help solve this, we created a phase-change material with help from the Triangle Research and Development Corporation.

With funding from a NASA Small Business Innovation Research contract, Triangle incorporated the material into a fabric glove insert that could maintain a steady temperature by absorbing and releasing heat, ensuring it feels just right.

While the invention never made it to orbit, it did make it into the driver’s seat.

Outlast Technologies exclusively licensed the material from Triangle and has incorporated it into outdoor gear, bedding, and now – auto racing suits with help from Cambridge, England-based Walero.

Cristiana Oprea, a racer, wears a black Walero racing undergarment while sitting on a red divider at the edge of a racetrack.

Due to extreme temperatures in the cockpit, drivers in almost every major racing championship wear Walero for its cooling properties. Cristiana Oprea (pictured) wears it while driving for the European Rally Championship. Credit: Walero

The race undergarments, bonded with fire-retardant material for added protection, help drivers maintain a lower core temperature and heart rate, which means fewer mistakes and better lap times.

The suits have been sold to both amateur racers and professional NASCAR drivers.

Lightweight Rain Jackets

Astronaut John Grunsfeld works on repairs to the Hubble Space Telescope.

The superinsulating material that makes up space blankets is one of our most ubiquitous spinoffs. Found everywhere from inside the walls and roofs of buildings to cryogenic tanks and MRI machines, radiant barrier technology was first created to insulate spacesuits and spacecraft. And now this NASA spinoff can be found in weatherproof jackets as well.

Inspired by her passion to run following a series of surgeries to help correct a life-threatening injury, Hema Nambiar launched her Larchmont, New York, start-up company 13-One. To create her jacket, she worked with Advanced Flexible Materials Inc.’s brand Heatsheets. The brand was already marketing products like the space blankets traditionally distributed after races to prevent dangerous drops in temperature.

A man wears a 13-One jacket.

The 13-One jackets are designed to be warm and weatherproof, but their thin, reflective lining lets them also be lightweight and easily portable. Credit: Lourenso Ramautar, Out of New York Studio

The resulting line of jackets has a black exterior and a lining to reflect body heat. They weigh less than a pound, are wind- and water-resistant, and easily pack into a small, built-in pouch.

Want to check out more NASA spinoffs? Be sure to find us on spinoff.nasa.gov and on Twitter.

Interested in licensing your own NASA technologies? Check out the NASA Technology Transfer program at technology.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

How Climate Change Showed Up in 2021

2021 was tied for the sixth-hottest year since modern record keeping began. We work together with the National Oceanic and Atmospheric Administration to track temperatures around the world and study how they change from year to year.

How Climate Change Showed Up In 2021

For decades, the overall global temperature has been increasing because of human activities. The last decade has been the warmest on record. Each individual year’s average temperature, however, can be affected by things like ocean circulation, volcanic eruptions, and specific weather events.

For instance, last year we saw the beginning of La Niña – a pattern of cooler waters in the Pacific – that was responsible for slightly cooling 2021’s average temperature. Still, last year continued a long-term trend of global warming.

Globally, Earth’s temperature in 2021 was nearly 2°F warmer than the late 19th Century, for the seventh year in a row.

How Climate Change Showed Up In 2021

The Record

Studying 142 Years

Since 1880, we can put together a consistent record of temperatures around the planet and see that it was much colder in the late-19th century. Before 1880, uncertainties in tracking global temperatures are larger. Temperatures have increased even faster since the 1970s, the result of increasing greenhouse gases in the atmosphere.

Tracking Millions of Individual Observations

Our scientists use millions of individual observations of data from more than 20,000 weather stations and Antarctic research stations, together with ship- and buoy-based observations of sea surface temperatures, to track global temperatures.

How Climate Change Showed Up In 2021

Reviewing Multiple Independent Records

Our global temperature record – GISTEMP – is one of a number of independent global temperature records, all of which show the same pattern of warming.

How Climate Change Showed Up In 2021

The Consequences

Everywhere Experiences Climate Change Differently

As Earth warms, temperature changes occur unevenly around the globe. The Arctic is currently warming about four times faster than the rest of the planet – a process called Arctic amplification. Similarly, urban areas tend to warm faster than rural areas, partly because building materials like asphalt, steel and concrete retain heat.

How Climate Change Showed Up In 2021

Droughts and Floods in Warmer Weather

More than 88% of the Western US experienced drought conditions in 2021. At the same time, communities in Western Europe saw two months’ worth of rain in 24 hours, breaking records and triggering flash floods. Because a hotter climate means more water can be carried in the atmosphere, areas like the Western US suffer drought from the increased 'thirstiness' of the atmosphere, while precipitation events can become more extreme as the amount of moisture in the atmosphere rises.

How Climate Change Showed Up In 2021

Sea Levels Continue to Rise

Melting ice raises sea levels around the world, as meltwater drains into the ocean. In addition, heat causes the ocean water to expand. From 1993 to today, global mean sea level has been rising around 3.4 millimeters per year. In 2021, sea level data from the recently launched NASA/ESA Sentinel-6 Michael Freilich mission became available to the public.

How Climate Change Showed Up In 2021

There is Hope

“This is not good news, but the fact that we are able to track this in real time and understand why it’s changing, and get people to notice why it’s changing and how we can change things to change the next trajectory, that gives me hope. Because we’re not in the dark here. We’re not the dinosaurs who are unaware the comet is coming. We can see the comet coming, and we can act.” – Dr. Gavin Schmidt, director of NASA GISS, where the global temperature record is calculated

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
Happy New Year From NASA! The Year 2021 Was One For The Books, So What Will 2022 Bring? No Matter What,

Happy New Year From NASA! The year 2021 was one for the books, so what will 2022 bring? No matter what, remember: You are made of star stuff. Sparkly, glorious star stuff.

What's this image? Click here. Credit: ESA/Hubble and NASA, A. Sarajedini Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

NASA Communications and Navigation in 2021: Top 10 Iconic Moments

Did you know NASA uses global networks of antennas and relay satellites to talk with astronauts and spacecraft?

Our space communications and navigation community has had an incredible year! From supporting science and exploration missions to developing cutting-edge tech, here are some of the team’s most impactful accomplishments of 2021.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

1. We launched a revolutionary tech demo, the Laser Communications Relay Demonstration, which will showcase the benefits of using infrared laser links to send data from space. Laser communications systems can offer 10 to 100 times more data per second than traditional radio! You can learn more about the mission in a new season of our podcast, The Invisible Network.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

2. Planetary radars observed their 1,000th near-Earth asteroid since 1968! Our Deep Space Network plays a critical role in detecting near-Earth asteroids, using radar to spot them. These radar detections help definitively predict if an asteroid is going to hit Earth, or if it’s just going to pass close by.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

3. We used lessons learned developing communications services for the Moon to address digital inequality on Earth. Folks at our Glenn Research Center in Cleveland examined how lunar network approaches could address technical challenges to Wi-Fi connectivity in their local community.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

4. Our Search and Rescue office participated in dress rehearsals for the Artemis I mission to the Moon! They tested critical distress technologies that will help locate Artemis astronauts in the unlikely event they need to leave the Orion capsule and enter open water before recovery teams can reach them.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

5. With high international participation, we hosted a virtual workshop on cognitive communications at our Glenn Research Center in Cleveland, Ohio. Cognitive communications employs artificial intelligence and machine learning in radio systems to provide a host of benefits to user missions!

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

6. We celebrated the 100th birthday of the creator of Star Trek, the late Gene Roddenberry. The event featured Roddenberry’s son Rod, NASA administrator Bill Nelson, and Star Trek actor George Takei. Following the program, our Deep Space Network broadcast Gene’s 1976 remarks on diversity and inclusion toward star system 40 Eridani — home to the planet Vulcan in Star Trek lore. Signals from the broadcast will arrive there in 16.5 years.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

7. We worked with the aerospace community to refine our LunaNet architecture for lunar communications and navigation services! LunaNet will leverage innovative networking techniques, standards, and an extensible framework to rapidly expand network capabilities at the Moon for Artemis. This framework will allow industry, academia, and international partners to build and operate LunaNet nodes alongside us.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

8. Our Deep Space Network welcomed a brand new satellite dish into the family! Called Deep Space Station 56, or DSS-56, the 112-foot-wide (34-meter) dish is now online and ready to communicate for a variety of uses, including missions at the Moon and Mars.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

9. Our Near Space Network engaged with over 200 commercial aerospace companies! They’re working toward a new paradigm where NASA missions near Earth can rely on a blend of government and commercial space communications infrastructure to meet their needs.

NASA Communications And Navigation In 2021: Top 10 Iconic Moments

10. Our 10th item on the list isn’t a single moment, but the continued support our communications networks provided missions throughout 2021. Whether it was a Commercial Crew mission to the International Space Station or the Perseverance Rover’s touchdown on Mars, our Near Space Network and Deep Space Network were there to empower mission success! Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
Ever Wanted To Look Back In Time? This Week, We’re Launching A Kind Of Time Machine – A Telescope

Ever wanted to look back in time? This week, we’re launching a kind of time machine – a telescope so powerful it will help us see back some of the first stars and galaxies made after the Big Bang.

The James Webb Space Telescope is the largest and most advanced telescope we’ve ever put in space. With revolutionary technology, it will study 13.5 billion years of cosmic history and help humanity understand our place in the stars.

Tomorrow, Dec. 25, at 7:20 a.m. ET (12:20 UTC), the Webb Telescope is set to launch from French Guiana, beginning a 29-day journey to a spot a million miles away.

How to Watch:

In English:

Dec. 25

Live coverage starts at 6:00 a.m. ET/11:00 UTC

Facebook, YouTube, Twitter, Twitch

In Spanish:

Dec. 25

Live coverage starts at 6:30 a.m. ET/11:30 UTC

Facebook, YouTube, Twitter

Once Webb launches, the journey has only just begun. The telescope will begin a 2-week-long process of unfolding itself in space before settling in to explore the universe in ways we’ve never seen before.

Follow along on Twitter, Facebook and Instagram and with #UnfoldTheUniverse.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags