Your gateway to endless inspiration
For the first time in history, a spacecraft has touched the Sun. Our Parker Solar Probe flew right through the Sun’s atmosphere, the corona. (That’s the part of the Sun that we can see during a total solar eclipse.)
This marks one great step for Parker Solar Probe and one giant leap for solar science! Landing on the Moon helped scientists better understand how it was formed. Now, touching the Sun will help scientists understand our star and how it influences worlds across the solar system.
Unlike Earth, the Sun doesn’t have a solid surface (it’s a giant ball of seething, boiling gases). But the Sun does have a superheated atmosphere. Heat and pressure push solar material away from the Sun. Eventually, some of that material escapes the pull of the Sun’s gravity and magnetism and becomes the solar wind, which gusts through the entire solar system.
But where exactly does the Sun’s atmosphere end and the solar wind begin? We’ve never known for sure. Until now!
In April 2021, Parker Solar Probe swooped near the Sun. It passed through a massive plume of solar material in the corona. This was like flying into the eye of a hurricane. That flow of solar stuff — usually a powerful stream of particles — hit the brakes and went into slow-motion.
For the first time, Parker Solar Probe found itself in a place where the Sun’s magnetism and gravity were strong enough to stop solar material from escaping. That told scientists Parker Solar Probe had passed the boundary: On one side, space filled with solar wind, on the other, the Sun’s atmosphere.
Parker Solar Probe’s proximity to the Sun has led to another big discovery: the origin of switchbacks, zig-zag-shaped magnetic kinks in the solar wind.
These bizarre shapes were first observed in the 1990s. Then, in 2019, Parker Solar Probe revealed they were much more common than scientists first realized. But they still had questions, like where the switchbacks come from and how the Sun makes them.
Recently, Parker Solar Probe dug up two important clues. First, switchbacks tend to have lots of helium, which scientists know comes from the solar surface. And they come in patches.
Those patches lined up just right with magnetic funnels that appear on the Sun’s surface. Matching these clues up like puzzle pieces, scientists realized switchbacks must come from near the surface of the Sun.
Figuring out where switchbacks come from and how they form will help scientists understand how the Sun produces the solar wind. And that could clue us into one of the Sun’s biggest mysteries: why the Sun’s atmosphere is much, much hotter than the surface below.
Parker Solar Probe will fly closer and closer to the Sun. Who knows what else we’ll discover?
Make sure to follow us on Tumblr for your regular dose of space!
That’s a wrap! Thank you for all the wonderful questions. James Webb Space Telescope Planetary Scientist Dr. Naomi Rowe-Gurney answered questions about the science goals, capabilities, and her hopes for the world's most powerful telescope.
Check out her full Answer Time for more: Career | Science Goals | Capabilities
We hope you enjoyed today and learned something new about the Webb mission! Don’t miss the historic launch of this first-of-its kind space observatory. Tune in to NASA TV HERE on Dec. 22 starting at 7:20 a.m. EST (12:20 UTC).
If today’s Answer Time got you excited, explore all the ways you can engage with the mission before launch! Join our #UnfoldTheUniverse art challenge, our virtual social event with international space agencies, and countdown to liftoff with us. Check out all the ways to participate HERE.
Make sure to follow us on Tumblr for your regular dose of space!
Questions coming up from….
@teamadamsperret: Congrats on your PhD!! When people ask what you do, what's your reply?
@Anonymous: How does it feel, working in NASA?
@moonlighy: How did you find your love for this job?
@redbullanddepression: what the prettiest star in the sky in your opinion? also, you are a great role model as a queer woman who is attending university next year to major in aerospace engineering!!!
Hi.dr.naomi.i have 2 questions.
1.Can this JAMES WEB T.S able to see Mercury, Venus and certain stars that are close to the sun either. I.
2.Why is the James Webb t.s.mirror yellow?
Any specific reason for this
Will it take pictures of Pluto?
When will we start seeing images from the James Webb telescope??
What would be the ideal discovery to make with the Webb Telescope? Or what would you love to find with it?
Does Webb have resolution to look more closely at nearby objects, like Mars or even Earth? Or just far things?
Hello. I'm curious what new feature the james webb brings to the table, like its ability to detect in infrared, that you are most excited about? What are you most interested to look into with this new telescope?
How exactly will it work? And whats the goal of the project?
Do you have any protections against asteroids?
Concerning the new telescope -out of curiosity- what is the maximum distance it can view planets, galaxies, objects, anything up to -in terms of common/metric measurement, and/or years (if applicable) etc.? -Rose
What does “chemical fingerprints” mean? What chemicals indicate possible life on other planets?
Will the James Webb Telescope also be able to spot out signs of life on habitable worlds?
Questions coming up from….
@maybeinanotherworld: JWST IS HAPPENING! How are all of you feeling about this?
@Anonymous: How powerful is this telescope, exactly?
@Anonymous: Why are the mirrors on it yellow?
@foeofcolor: How long is this estimated to last for? Like how long will it be able to function in space by estimates?
Who's ready to #UnfoldTheUniverse? The James Webb Space Telescope Answer Time with expert Dr. Naomi Rowe-Gurney is LIVE! Stay tuned for talks about the science goals, capabilities, and hopes for the world's most powerful telescope. View ALL the answers HERE.
Make sure to follow us on Tumblr for your regular dose of space!
Think X-ray vision is a superpower found only in comics and movies? Unlike Superman and Supergirl, NASA has it for real, thanks to the X-ray observatories we’ve sent into orbit.
Now the Imaging X-ray Polarimetry Explorer – IXPE for short – has shot into space to enhance our superpower!
Meet IXPE
When dentists take X-ray pictures of a tooth, they use a machine that makes X-rays and captures them on a device placed on the opposite side. But X-rays also occur naturally. In astronomy, we observe X-rays made by distant objects to learn more about them.
IXPE will improve astronomers’ knowledge about some of these objects, like black holes, neutron stars, and the expanding clouds made by supernova explosions.
That’s because it will capture a piece of information about X-ray light that has only rarely been measured from space!
X-ray astronomers have learned a lot about the cosmos by measuring three properties of light – when it arrives, where it’s coming from, and what energies it has (think: colors). Picture these characteristics as making up three of the four sides of a pyramid. The missing piece is a property called polarization.
Polarization tells us how organized light is. This gives astronomers additional clues about how the X-rays were made and what matter they’ve passed through on their way to us. IXPE will explore this previously hidden side of cosmic X-ray sources.
What is polarization?
All light, from microwaves to gamma rays, is made from pairs of waves traveling together – one carrying electricity and the other magnetism. These two waves always vibrate at right angles (90°) to each other, with their peaks and valleys in sync, and they also vibrate at right angles to their direction of motion.
To keep things simple, we’ll illustrate only one of these waves – the one carrying electricity. If we could zoom into a typical beam of light, we’d see something like the animation above. It’s a mess, with all the wave peaks pointing in random directions.
When light interacts with matter, it can become better organized. Its electric field can vibrate in a way that keeps all the wave crests pointing in the same direction, as shown above. This is polarized light.
The amount and type of polarization we detect in light tell us more about its origin, as well as any matter it interacted with before reaching us.
Let’s look at the kinds of objects IXPE will study and what it may tell us about them.
Exploring star wrecks
Exploded stars create vast, rapidly expanding clouds called supernova remnants – like the Jellyfish Nebula above. It formed 4,000 years ago, but even today, the remnant’s heart can tell us about the extreme conditions following the star’s explosion.
X-rays give us a glimpse of the powerful processes at work during and after these explosions. IXPE will map remnants like this, revealing how X-rays are polarized across the entire object. This will help us better understand how these celestial cataclysms take place and evolve.
Magnifying supermagnets
Some supernovae leave behind neutron stars. They form when the core of a massive star collapses, squeezing more than our Sun’s mass into a ball only as wide as a city.
The collapse greatly ramps up their spin. Some neutron stars rotate hundreds of times a second! Their magnetic fields also get a tremendous boost, becoming trillions of times stronger than Earth’s. One type, called a magnetar, boasts the strongest magnetic fields known – a thousand times stronger than typical neutron stars.
These superdense, superspinning supermagnets frequently erupt in powerful outbursts (illustrated above) that emit lots of X-rays. IXPE will tell astronomers more about these eruptions and the extreme magnetic fields that help drive them.
Closing in on black holes
Black holes can form when massive stars collapse or when neutron stars crash together. Matter falling toward a black hole quickly settles into a hot, flat structure called an accretion disk. The disk’s inner edge gradually drains into the black hole. Notice how odd the disk appears from certain angles? This happens because the black hole’s extreme gravity distorts the path of light coming from the disk’s far side.
X-rays near the black hole can bounce off the disk before heading to our telescopes, and this polarizes the light. What’s exciting is that the light is polarized differently across the disk. The differences depend both on the energies of the X-rays and on what parts of the disk they strike. IXPE observations will provide astronomers with a detailed picture of what’s happening around black holes in our galaxy that can’t be captured in any other way.
By tracking how X-ray light is organized, IXPE will add a previously unseen dimension to our X-ray vision. It’s a major upgrade that will give astronomers a whole new perspective on some of the most intriguing objects in the universe.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
Pew. Pew. Lasers in space!
Iconic movie franchises like Star Wars and Star Trek feature futuristic laser technologies, but space lasers aren’t limited to the realm of science fiction. In fact, laser communications technologies are changing the way missions transmit their data. The Laser Communications Relay Demonstration (LCRD) blasts into space this weekend, demonstrating the unique – and totally awesome – capabilities of laser communications systems.
Currently, NASA missions rely on radio frequency to send data to Earth. While radio has served the agency well since the earliest days of spaceflight, there are significant benefits to laser systems. Just as the internet has gone from dial-up to high-speed connections, lasers communications’ higher frequency allows missions to send much more information per second than radio systems. With laser communications, it would only take nine days to transmit a complete map of Mars back to Earth, compared to nine weeks with radio frequency systems.
LCRD will demonstrate these enhanced capabilities from 22,000 miles above Earth’s surface. And although the mission uses lasers, these lasers are not visible to the human eye. Once in orbit, the mission will perform experiments using two telescopes on Earth that will relay data through the spacecraft from one site to the other over an optical communications link. These experiments will help NASA and the aerospace community understand the operational challenges of using lasers to communicate to and from space.
On Earth, there are ground stations telescopes that will capture LCRD’s laser signal and send the data to the mission operations center in New Mexico. The two ground stations are located on Haleakalā, Hawaii and Table Mountain, California. These picturesque locations weren’t chosen because they’re beautiful, but rather for their mostly clear skies. Clouds – and other atmospheric disturbances – can disrupt laser signals. However, when those locations do get cloudy, we’ve developed corrective technologies to ensure we receive and successfully decode signals from LCRD.
This demonstration will help NASA, researchers, and space companies learn more about potential future applications for laser communications technologies. In the next few years, NASA will launch additional laser missions to the Moon on Artemis II and to the asteroid belt, even deeper into space. These missions will give us insight on the use of laser communications further in space than ever before.
Ultimately, laser systems will allow us to glean more information from space. This means more galaxy pics, videos of deep space phenomena, and live, 4K videos from astronauts living and working in space.
Laser communications = more data in less time = more discoveries.
If laser communications interests you, check out our Space Communications and Navigation (SCaN) Internship Project. This program provides high school, undergrad, graduate, and even Ph.D. candidates with internship opportunities in space communications areas – like laser comm.
Make sure to follow us on Tumblr for your regular dose of space!
The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!
🚨 Ask your questions now by visiting http://nasa.tumblr.com/ask.
Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.
Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.
Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.
With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.
It will study galaxies near and far, young and old, to understand how they evolve.
Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.
Make sure to follow us on Tumblr for your regular dose of space!
Suspended in space, the stars that reside in the Orion Nebula are scattered throughout a dramatic dust-and-gas landscape of plateaus, mountains, and valleys that are reminiscent of the Grand Canyon. This visualization uses visible and infrared views, combining images from the Hubble Space Telescope and the Spitzer Space Telescope to create a three-dimensional visualization.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Visualization credits: NASA, ESA, and F. Summers, G. Bacon, Z. Levay, J. DePasquale, L. Hustak, L. Frattare, M. Robberto, M. Gennaro (STScI), R. Hurt (Caltech/IPAC), M. Kornmesser (ESA); Acknowledgement: A. Fujii, R. Gendler
See that tiny blob of light, circled in red? Doesn’t look like much, does it? But that blob represents a feast big enough to feed a black hole around 30 million times the mass of our Sun! Scientists call these kinds of stellar meals tidal disruption events, and they’re some of the most dramatic happenings in the cosmos.
Sometimes, an unlucky star strays too close to a black hole. The black hole’s gravity pulls on the star, causing it to stretch in one direction and squeeze in another. Then the star pulls apart into a stream of gas. This is a tidal disruption event. (If you’re worried about this happening to our Sun – don’t. The nearest black hole we know about is over 1,000 light-years away. And black holes aren’t wild space vacuums. They don’t go zipping around sucking up random stars and planets. So we’re pretty safe from tidal disruption events!)
The trailing part of the stream gets flung out of the system. The rest of the gas loops back around the black hole, forming a disk. The material circling in the disk slowly drifts inward toward the black hole’s event horizon, the point at which nothing – not even light – can escape. The black hole consumes the gas and dust in its disk over many years.
Sometimes the black hole only munches on a passing star – we call this a partial tidal disruption event. The star loses some of its gas, but its own gravity pulls it back into shape before it passes the black hole again. Eventually, the black hole will have nibbled away enough material that the star can’t reform and gets destroyed.
We study tidal disruptions, both the full feasts and the partial snacks, using many kinds of telescopes. Usually, these events are spotted by ground-based telescopes like the Zwicky Transient Facility and the All-Sky Automated Survey for Supernovae network.
They alert other ground- and space-based telescopes – like our Neil Gehrels Swift Observatory (illustrated above) and the European Space Agency’s XMM-Newton – to follow up and collect more data using different wavelengths, from visible light to X-rays. Even our planet-hunting Transiting Exoplanet Survey Satellite has observed a few of these destructive wonders!
We’re also studying disruptions using multimessenger astronomy, where scientists use the information carried by light, particles, and space-time ripples to learn more about cosmic objects and occurrences.
But tidal disruptions are super rare. They only happen once every 10,000 to 100,000 years in a galaxy the size of our own Milky Way. Astronomers have only observed a few dozen events so far. By comparison, supernovae – the explosive deaths of stars – happen every 100 years or so in a galaxy like ours.
That’s why scientists make their own tidal disruptions using supercomputers, like the ones shown in the video here. Supercomputers allow researchers to build realistic models of stars. They can also include all of the physical effects they’d experience whipping ‘round a black hole, even those from Einstein’s theory of general relativity. They can alter features like how close the stars get and how massive the black holes are to see how it affects what happens to the stars. These simulations will help astronomers build better pictures of the events they observe in the night sky.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
If you’ve eaten a piece of fruit, a vegetable, or a handful of nuts in the past week, it’s very likely they all came from “America’s Salad Bowl.” California’s Central Valley and Central Coast is where more than one-third of all vegetables in the U.S. are grown––and two-thirds of our fruits and nuts.
Keeping this area fertile takes a lot of water, and we provide farmers with NASA data that helps them manage increasingly scarce supplies. Working with farmers and conservation groups, we developed a new website called OpenET to transform how water is managed in the West! It covers 17 western U.S. states, putting satellite and other Earth science data into their hands. The website gives them daily and monthly views of water usage, down to the resolution of a single field of vegetables.
The ET in OpenET doesn’t stand for extraterrestrial, but “evapotranspiration.” Evapotranspiration is a measurement that farmers can use to estimate the amount of water being used by their fields and crops. This water will usually need to be replaced through irrigation or rainfall.
We work closely with partners and people around the world, connecting them with NASA Earth data to solve our planet’s most pressing issues.
Learn more about our Applied Sciences program, here! We are Earth. Science. Action.
Make sure to follow us on Tumblr for your regular dose of space!
Nicknamed the Cosmic Reef because it resembles an undersea world, this is a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way.
Released in April 2020 to celebrate the Hubble Space Telescope’s 30th anniversary, the reef showcases the beauty and mystery of space in this complex image of starbirth. Throughout its decades of discoveries, Hubble has yielded over 1.5 million observations, providing data that astronomers around the world have used to write more than 18,000 peer-reviewed scientific publications, making it the most prolific space observatory in history.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA, and STScI
These three towers are only a small portion of the massive Eagle Nebula.
Known as the “Pillars of Creation,” the beautiful tendrils of cosmic dust and gas are giving birth to new stars, buried within their spires. This iconic image only shows a stretch of about four or five light-years … while the whole nebula itself spans about 70 by 55 light-years.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
The Butterfly Nebula, created by a dying star, was captured by the Hubble Space Telescope in this spectacular image. Observations were taken over a more complete spectrum of light, helping researchers better understand the “wings'' of gas bursting out from its center. The nebula’s dying central star has become exceptionally hot, shining ultraviolet light brightly over the butterfly’s wings and causing the gas to glow.
Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA, and J. Kastner (RIT)
The stunning Veil Nebula was created after a star about 20 times the mass of the Sun lived fast and died young – exploding in a cataclysmic release of energy known as a supernova.
In a violent stellar explosion roughly 10,000 years ago, shockwaves and debris created this staggeringly beautiful trail through space. The picture above shows a mosaic of six Hubble Space Telescope pictures, a small area roughly two light-years across, and only a tiny fraction of the nebula's vast 110 light-year structure.
To learn more about Hubble’s celebration of Nebula November and see new nebula images, visit our space telescope's nebula page.
You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!
Image credits: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
This bone-chilling force will leave you shivering alone in terror! An unseen power is prowling throughout the cosmos, driving the universe to expand at a quickening rate. This relentless pressure, called dark energy, is nothing like dark matter, that mysterious material revealed only by its gravitational pull. Dark energy offers a bigger fright: pushing galaxies farther apart over trillions of years, leaving the universe to an inescapable, freezing death in the pitch black expanse of outer space. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.
Make sure to follow us on Tumblr for your regular dose of space!
Can you hear this exoplanet screaming? As the exoplanet known as HD 80606 b approaches its star from an extreme, elliptical orbit, it suffers star-grazing torture that causes howling, supersonic winds and shockwave storms across this world beyond our solar system. Its torturous journey boils its atmosphere to a hellish 2,000 degrees Fahrenheit every 111 days, roasting both its light and dark sides. HD 80606b will never escape this scorching nightmare. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.
Make sure to follow us on Tumblr for your regular dose of space!
For the first time, astronomers may have detected an exoplanet candidate outside of the Milky Way galaxy. Exoplanets are defined as planets outside of our Solar System. All other known exoplanets and exoplanet candidates have been found in the Milky Way, almost all of them less than about 3,000 light-years from Earth.
This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star's light and produces a characteristic dip. Researchers used our Chandra X-ray Observatory to search for dips in the brightness of X-rays received from X-ray bright binaries in the spiral galaxy Messier 51, also called the Whirlpool Galaxy (pictured here). These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. They estimate the exoplanet candidate would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.
This composite image of the Whirlpool Galaxy was made with X-ray data from Chandra and optical light from our Hubble Space Telescope.
Credit: X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler
Make sure to follow us on Tumblr for your regular dose of space!
Are we alone? How did we get here? Where are we headed?
At NASA, our mission is to explore. We visit destinations in our solar system and study worlds beyond to better understand these big questions.
We also dream. We dream of traveling to distant worlds, and what that might be like. In the video above you can see fanciful, imagined adventures to real places we’ve studied at NASA.
Check out how we created these otherworldly scenes in the video below. A NASA videographer used green screens to add motion and real people to bring life to our series of solar system and exoplanet travel posters.
Let’s dive into one example from the video. The shot of kayaking on Titan showcases the real rivers and lakes of liquid methane and ethane that slosh and flow on Saturn's largest moon. Titan's mysterious surface was revealed by our Cassini spacecraft, which also deployed the European Space Agency’s Huygens probe to the surface. The atmosphere on Titan is so thick, and the gravity so light, that with each strike of a paddle, you might be lofted above the swift current as you ride the tides through a narrow strait called the Throat of Kraken. NASA scientist Mike Malaska studies Titan and collaborated on the poster featured in the video. His research informed the artwork, and so did a hobby: kayaking. Those ultra-cold chemical seas might be even more of a challenge than shown here. Your boat might crack, or even dissolve, Malaska said.
We’ll learn more about Titan when our Dragonfly mission of dual quadcoptors — rotorcraft with eight blades each — visits the icy moon in 2034.
Our understanding of other worlds is always evolving, and sometimes we learn new details after we illustrate our science. In one of our travel posters, we show a traveler standing on the surface of exoplanet Kepler-16b with two shadows formed by the planet’s two suns. The planet does indeed orbit two stars, but with later size and mass refinements, we now think it would be hard to stand there and enjoy a binary sunset. There isn't a solid surface to stand on a gas planet, and that's what Kepler-16b now appears to be!
In addition to sharing how sublime science can be, these scenes are a reminder that there are lots of careers in the space program, not just scientist, engineer, or astronaut. A creative team at NASA’s Jet Propulsion Laboratory in Southern California produced the travel posters, originally to help share the work of NASA's Exoplanet Exploration Program. They are the result of lots of brainstorming and discussion with real NASA scientists, engineers, and expert communicators. The video versions of these spacey travel scenes were produced by visualization experts at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
All of this work is meant to inspire, and to explore the edge of possibility. It’s also an invitation. With science, we’re stepping into the future. Join us?